Green synthesis of gold nanoparticles using aspartame and their catalytic activity for p-nitrophenol reduction

Wu S, Yan S, Qi W, Huang R, Cui J, Su R, He Z. Green synthesis of gold nanoparticles using aspartame and their catalytic activity for p-nitrophenol reduction. Nanoscale Res Lett. 2015 May 8;10:213. doi: 10.1186/s11671-015-0910-7. PMID: 25991916; PMCID: PMC4431991.

Abstract

We demonstrated a facile and environmental-friendly approach to form gold nanoparticles through the reduction of HAuCl4 by aspartame. The single-crystalline structure was illustrated by transmission electron microscopy (TEM) and X-ray diffraction (XRD). The energy-dispersive X-ray spectroscopy (EDS) and Fourier transform infrared (FTIR) results indicated that aspartame played a pivotal role in the reduction and stabilization of the gold crystals. The crystals were stabilized through the successive hydrogen-bonding network constructed between the water and aspartame molecules. Additionally, gold nanoparticles synthesized through aspartame were shown to have good catalytic activity for the reduction of p-nitrophenol to p-aminophenol in the presence of NaBH4.

Keywords: Aspartame; Catalysis; Gold nanoparticles; Green synthesis.

Similar articles

See all similar articles

Cited by

See all “Cited by” articles

References

  1. Li J, Zhu Q-L, Xu Q. Highly active AuCo alloy nanoparticles encapsulated in the pores of metal-organic frameworks for hydrolytic dehydrogenation of ammonia borane. Chem Commun. 2014;50:5899–901. doi: 10.1039/c4cc00785a. – DOI – PubMed
  2. Gan PP, Ng SH, Huang Y, Li SFY. Green synthesis of gold nanoparticles using palm oil mill effluent (POME): a low-cost and eco-friendly viable approach. Bioresour Technol. 2012;113:132–5. doi: 10.1016/j.biortech.2012.01.015. – DOI – PubMed
  3. Raveendran P, Fu J, Wallen SL. Completely ‘green’ synthesis and stabilization of metal nanoparticles. J Am Chem Soc. 2003;125:13940–1. doi: 10.1021/ja029267j. – DOI – PubMed
  4. Krishnamurthy S, Esterle A, Sharma NC, Sahi SV. Yucca-derived synthesis of gold nanomaterial and their catalytic potential. Nanoscale Res Lett. 2014;9:1–9. doi: 10.1186/1556-276X-9-627. – DOI – PMC – PubMed
  5. Moulton MC, Braydich-Stolle LK, Nadagouda MN, Kunzelman S, Hussain SM, Varma RS. Synthesis, characterization and biocompatibility of ‘green’ synthesized silver nanoparticles using tea polyphenols. Nanoscale. 2010;2:763–70. doi: 10.1039/c0nr00046a. – DOI – PubMed
  6. Reddy V, Torati RS, Oh S, Kim C. Biosynthesis of gold nanoparticles assisted by Sapindus mukorossi gaertn. Fruit pericarp and their catalytic application for the reduction of p-nitroaniline. Ind Eng Chem Res. 2012;52:556–64. doi: 10.1021/ie302037c. – DOI
  7. Zhan G, Ke L, Li Q, Huang J, Hua D, Ibrahim A-R. Synthesis of gold nanoplates with bioreducing agent using syringe pumps: a kinetic control. Ind Eng Chem Res. 2012;51:15753–62. doi: 10.1021/ie302483d. – DOI
  8. Samadi N, Golkaran D, Eslamifar A, Jamalifar H, Fazeli MR, Mohseni FA. Intra/extracellular biosynthesis of silver nanoparticles by an autochthonous strain of Proteus mirabilis isolated from photographic waste. J Biomed Nanotechnol. 2009;5:247–53. doi: 10.1166/jbn.2009.1029. – DOI – PubMed
  9. Iravani S. Green synthesis of metal nanoparticles using plants. Green Chem. 2011;13:2638–50. doi: 10.1039/c1gc15386b. – DOI
  10. Liu J, Qin G, Raveendran P, Ikushima Y. Facile ‘green’ synthesis, characterization, and catalytic function of β-D-glucose-stabilized Au nanocrystals. Chem-eur J. 2006;12:2131–8. doi: 10.1002/chem.200500925. – DOI – PubMed
  11. Tiwari AD, Mishra AK, Mishra SB, Arotiba OA, Mamba BB. Green synthesis and stabilization of gold nanoparticles in chemically modified chitosan matrices. Int J Biol Macromol. 2011;48:682–7. doi: 10.1016/j.ijbiomac.2011.02.008. – DOI – PubMed
  12. Gao Z, Su R, Huang R, Qi W, He Z. Glucomannan-mediated facile synthesis of gold nanoparticles for catalytic reduction of 4-nitrophenol. Nanoscale Res Lett. 2014;9:404–11. doi: 10.1186/1556-276X-9-404. – DOI – PMC – PubMed
  13. Wu J, Tan LH, Hwang K, Xing H, Wu P, Li W, et al. DNA sequence-dependent morphological evolution of silver nanoparticles and their optical and hybridization properties. J Am Chem Soc. 2014;136:15195–202. doi: 10.1021/ja506150s. – DOI – PubMed
  14. Zhong Z, Subramanian AS, Highfield J, Carpenter K, Gedanken A. From discrete particles to spherical aggregates: a simple approach to the self-assembly of Au colloids. Chem-eur J. 2005;11:1473–8. doi: 10.1002/chem.200400529. – DOI – PubMed
  15. Shao Y, Jin Y, Dong S. Synthesis of gold nanoplates by aspartate reduction of gold chloride. Chem Commun. 2004;9:1104–5. doi: 10.1039/b315732f. – DOI – PubMed
  16. Si S, Mandal TK. Tryptophan-based peptides to synthesize gold and silver nanoparticles: a mechanistic and kinetic study. Chem-eur J. 2007;13:3160–8. doi: 10.1002/chem.200601492. – DOI – PubMed
  17. Tan YN, Lee JY, Wang DI. Uncovering the design rules for peptide synthesis of metal nanoparticles. J Am Chem Soc. 2010;132:5677–86. doi: 10.1021/ja907454f. – DOI – PubMed
  18. Baalousha M, Lead J. Rationalizing nanomaterial sizes measured by atomic force microscopy, flow field-flow fractionation, and dynamic light scattering: sample preparation, polydispersity, and particle structure. Environ Sci Technol. 2012;46:6134–42. doi: 10.1021/es301167x. – DOI – PubMed
  19. Cheng Y-D, Lin S-Y. Isothermal Fourier transform infrared microspectrosopic studies on the stability kinetics of solid-state intramolecular cyclization of aspartame sweetener. J Agr Food Chem. 2000;48:631–5. doi: 10.1021/jf990595l. – DOI – PubMed
  20. Khurana HK, Cho IK, Shim JY, Li QX, Jun S. Application of multibounce attenuated total reflectance fourier transform infrared spectroscopy and chemometrics for determination of aspartame in soft drinks. J Agr Food Chem. 2008;56:778–83. doi: 10.1021/jf0724116. – DOI – PubMed
  21. Beer M, Kessler H, Sutherland G. Spectra of homologous series of monosubstituted amides. 1958;29:1097–104.
  22. Ning L, De-Ning W, Sheng-Kang Y. Hydrogen-bonding properties of segmented polyether poly (urethane urea) copolymer. Macromolecules. 1997;30:4405–9. doi: 10.1021/ma951386e. – DOI
  23. Pimentel GC, McClellan AL. The hydrogen bond. WH: Freeman; 1960.
  24. Chen S, Kimura K. Synthesis and characterization of carboxylate-modified gold nanoparticle powders dispersible in water. Langmuir. 1999;15:1075–82. doi: 10.1021/la9812828. – DOI
  25. Lin V, Colthup NB, Fateley WG, Grasselli JG. The handbook of infrared and raman characteristic frequencies of organic molecules. Boston: Academic Press; 1991.
  26. Pattanaargson S, Chuapradit C, Srisukphonraruk S. Aspartame degradation in solutions at various pH conditions. J Food Sci. 2001;66:808–9. doi: 10.1111/j.1365-2621.2001.tb15177.x. – DOI
  27. AswathyAromal S, Philip D. Green synthesis of gold nanoparticles using Trigonella foenum-graecum and its size-dependent catalytic activity. Spectrochim Acta Part A. 2012;95:1–5. doi: 10.1016/j.saa.2012.05.083. – DOI – PubMed
  28. Link S, El-Sayed MA. Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods. J Phys Chem B. 1999;103:8410–26. doi: 10.1021/jp9917648. – DOI
  29. Negishi Y, Tsukuda T. One-pot preparation of subnanometer-sized gold clusters via reduction and stabilization by meso-2, 3-dimercaptosuccinic acid. J Am Chem Soc. 2003;125:4046–7. doi: 10.1021/ja0297483. – DOI – PubMed
  30. Kumar A, Mandal S, Selvakannan P, Pasricha R, Mandale A, Sastry M. Investigation into the interaction between surface-bound alkylamines and gold nanoparticles. Langmuir. 2003;19:6277–82. doi: 10.1021/la034209c. – DOI – PubMed
  31. Wang X, Zhang X, Xu X, Zhang L. The LiCl effect on the conformation of lentinan in DMSO. Biopolymers. 2012;97:840–5. doi: 10.1002/bip.22084. – DOI – PubMed
  32. Çakir S, Coskun E, Biçer E, Çakir O. Electrochemical study of the complexes of aspartamewith Cu (II), Ni (II) and Zn (II) ions in the aqueous medium. Carbohyd Res. 2003;338:1217–22. doi: 10.1016/S0008-6215(03)00111-3. – DOI – PubMed
  33. Yin Y, Chen M, Zhou S, Wu L. A general and feasible method for the fabrication of functional nanoparticles in mesoporous silica hollow composite spheres. J Mater Chem. 2012;22:11245–51. doi: 10.1039/c2jm31138k. – DOI
  34. Chiu C-Y, Chung P-J, Lao K-U, Liao C-W, Huang MH. Facet-dependent catalytic activity of gold nanocubes, octahedra, and rhombic dodecahedra toward 4-nitroaniline reduction. J Phys Chem C. 2012;116:23757–63. doi: 10.1021/jp307768h. – DOI
  35. Dauthal P, Mukhopadhyay M. Prunus domestica fruit extract-mediated synthesis of gold nanoparticles and its catalytic activity for 4-nitrophenol reduction. Ind Eng Chem Res. 2012;51:13014–20. doi: 10.1021/ie300369g. – DOI
  36. Das SK, Dickinson C, Lafir F, Brougham DF, Marsili E. Synthesis, characterization and catalytic activity of gold nanoparticles biosynthesized with Rhizopus oryzae protein extract. Green Chem. 2012;14:1322–34. doi: 10.1039/c2gc16676c. – DOI

Leave a Reply

Your email address will not be published. Required fields are marked *

This site uses Akismet to reduce spam. Learn how your comment data is processed.