Green synthesis of gold nanoparticles using aspartame and their catalytic activity for p-nitrophenol reduction
Wu S, Yan S, Qi W, Huang R, Cui J, Su R, He Z. Green synthesis of gold nanoparticles using aspartame and their catalytic activity for p-nitrophenol reduction. Nanoscale Res Lett. 2015 May 8;10:213. doi: 10.1186/s11671-015-0910-7. PMID: 25991916; PMCID: PMC4431991.
Abstract
We demonstrated a facile and environmental-friendly approach to form gold nanoparticles through the reduction of HAuCl4 by aspartame. The single-crystalline structure was illustrated by transmission electron microscopy (TEM) and X-ray diffraction (XRD). The energy-dispersive X-ray spectroscopy (EDS) and Fourier transform infrared (FTIR) results indicated that aspartame played a pivotal role in the reduction and stabilization of the gold crystals. The crystals were stabilized through the successive hydrogen-bonding network constructed between the water and aspartame molecules. Additionally, gold nanoparticles synthesized through aspartame were shown to have good catalytic activity for the reduction of p-nitrophenol to p-aminophenol in the presence of NaBH4.
Keywords: Aspartame; Catalysis; Gold nanoparticles; Green synthesis.
Similar articles
- Preliminary investigation of catalytic, antioxidant, anticancer and bactericidal activity of green synthesized silver and gold nanoparticles using Actinidia deliciosa.Naraginti S, Li Y.J Photochem Photobiol B. 2017 May;170:225-234. doi: 10.1016/j.jphotobiol.2017.03.023. Epub 2017 Mar 30.PMID: 28454046
- Glucomannan-mediated facile synthesis of gold nanoparticles for catalytic reduction of 4-nitrophenol.Gao Z, Su R, Huang R, Qi W, He Z.Nanoscale Res Lett. 2014 Aug 20;9(1):404. doi: 10.1186/1556-276X-9-404. eCollection 2014.PMID: 25177220 Free PMC article.
- Catechin-capped gold nanoparticles: green synthesis, characterization, and catalytic activity toward 4-nitrophenol reduction.Choi Y, Choi MJ, Cha SH, Kim YS, Cho S, Park Y.Nanoscale Res Lett. 2014 Mar 3;9(1):103. doi: 10.1186/1556-276X-9-103.PMID: 24589224 Free PMC article.
- Shape tailored green synthesis and catalytic properties of gold nanocrystals.Rajan A, MeenaKumari M, Philip D.Spectrochim Acta A Mol Biomol Spectrosc. 2014 Jan 24;118:793-9. doi: 10.1016/j.saa.2013.09.086. Epub 2013 Oct 8.PMID: 24152864
- Characterization and catalytic activity of gold nanoparticles synthesized using ayurvedic arishtams.Aromal SA, Babu KV, Philip D.Spectrochim Acta A Mol Biomol Spectrosc. 2012 Oct;96:1025-30. doi: 10.1016/j.saa.2012.08.010. Epub 2012 Aug 19.PMID: 22954810
Cited by
- Reduction of 4-nitrophenol using green-fabricated metal nanoparticles.Mejía YR, Reddy Bogireddy NK.RSC Adv. 2022 Jun 24;12(29):18661-18675. doi: 10.1039/d2ra02663e. eCollection 2022 Jun 22.PMID: 35873318 Free PMC article. Review.
- Enzyme mediated synthesis of hybrid polyedric gold nanoparticles.Arib C, Spadavecchia J, de la Chapelle ML.Sci Rep. 2021 Feb 5;11(1):3208. doi: 10.1038/s41598-021-81751-1.PMID: 33547353 Free PMC article.
- pH-Dependent Synthesis of Anisotropic Gold Nanostructures by Bioinspired Cysteine-Containing Peptides.Tofanello A, Miranda ÉGA, Dias IWR, Lanfredi AJC, Arantes JT, Juliano MA, Nantes IL.ACS Omega. 2016 Sep 20;1(3):424-434. doi: 10.1021/acsomega.6b00140. eCollection 2016 Sep 30.PMID: 31457138 Free PMC article.
- Relationship between salt tolerance and nanoparticle synthesis by Williopsis saturnus NCIM 3298.Mohite P, Kumar AR, Zinjarde S.World J Microbiol Biotechnol. 2017 Sep;33(9):163. doi: 10.1007/s11274-017-2329-z. Epub 2017 Aug 5.PMID: 28780712
- Enhanced Antimicrobial and Anticancer Activity of Silver and Gold Nanoparticles Synthesised Using Sargassum incisifolium Aqueous Extracts.Mmola M, Roes-Hill ML, Durrell K, Bolton JJ, Sibuyi N, Meyer ME, Beukes DR, Antunes E.Molecules. 2016 Dec 2;21(12):1633. doi: 10.3390/molecules21121633.PMID: 27918447 Free PMC article.
References
- Li J, Zhu Q-L, Xu Q. Highly active AuCo alloy nanoparticles encapsulated in the pores of metal-organic frameworks for hydrolytic dehydrogenation of ammonia borane. Chem Commun. 2014;50:5899–901. doi: 10.1039/c4cc00785a. – DOI – PubMed
- Gan PP, Ng SH, Huang Y, Li SFY. Green synthesis of gold nanoparticles using palm oil mill effluent (POME): a low-cost and eco-friendly viable approach. Bioresour Technol. 2012;113:132–5. doi: 10.1016/j.biortech.2012.01.015. – DOI – PubMed
- Raveendran P, Fu J, Wallen SL. Completely ‘green’ synthesis and stabilization of metal nanoparticles. J Am Chem Soc. 2003;125:13940–1. doi: 10.1021/ja029267j. – DOI – PubMed
- Krishnamurthy S, Esterle A, Sharma NC, Sahi SV. Yucca-derived synthesis of gold nanomaterial and their catalytic potential. Nanoscale Res Lett. 2014;9:1–9. doi: 10.1186/1556-276X-9-627. – DOI – PMC – PubMed
- Moulton MC, Braydich-Stolle LK, Nadagouda MN, Kunzelman S, Hussain SM, Varma RS. Synthesis, characterization and biocompatibility of ‘green’ synthesized silver nanoparticles using tea polyphenols. Nanoscale. 2010;2:763–70. doi: 10.1039/c0nr00046a. – DOI – PubMed
- Reddy V, Torati RS, Oh S, Kim C. Biosynthesis of gold nanoparticles assisted by Sapindus mukorossi gaertn. Fruit pericarp and their catalytic application for the reduction of p-nitroaniline. Ind Eng Chem Res. 2012;52:556–64. doi: 10.1021/ie302037c. – DOI
- Zhan G, Ke L, Li Q, Huang J, Hua D, Ibrahim A-R. Synthesis of gold nanoplates with bioreducing agent using syringe pumps: a kinetic control. Ind Eng Chem Res. 2012;51:15753–62. doi: 10.1021/ie302483d. – DOI
- Samadi N, Golkaran D, Eslamifar A, Jamalifar H, Fazeli MR, Mohseni FA. Intra/extracellular biosynthesis of silver nanoparticles by an autochthonous strain of Proteus mirabilis isolated from photographic waste. J Biomed Nanotechnol. 2009;5:247–53. doi: 10.1166/jbn.2009.1029. – DOI – PubMed
- Iravani S. Green synthesis of metal nanoparticles using plants. Green Chem. 2011;13:2638–50. doi: 10.1039/c1gc15386b. – DOI
- Liu J, Qin G, Raveendran P, Ikushima Y. Facile ‘green’ synthesis, characterization, and catalytic function of β-D-glucose-stabilized Au nanocrystals. Chem-eur J. 2006;12:2131–8. doi: 10.1002/chem.200500925. – DOI – PubMed
- Tiwari AD, Mishra AK, Mishra SB, Arotiba OA, Mamba BB. Green synthesis and stabilization of gold nanoparticles in chemically modified chitosan matrices. Int J Biol Macromol. 2011;48:682–7. doi: 10.1016/j.ijbiomac.2011.02.008. – DOI – PubMed
- Gao Z, Su R, Huang R, Qi W, He Z. Glucomannan-mediated facile synthesis of gold nanoparticles for catalytic reduction of 4-nitrophenol. Nanoscale Res Lett. 2014;9:404–11. doi: 10.1186/1556-276X-9-404. – DOI – PMC – PubMed
- Wu J, Tan LH, Hwang K, Xing H, Wu P, Li W, et al. DNA sequence-dependent morphological evolution of silver nanoparticles and their optical and hybridization properties. J Am Chem Soc. 2014;136:15195–202. doi: 10.1021/ja506150s. – DOI – PubMed
- Zhong Z, Subramanian AS, Highfield J, Carpenter K, Gedanken A. From discrete particles to spherical aggregates: a simple approach to the self-assembly of Au colloids. Chem-eur J. 2005;11:1473–8. doi: 10.1002/chem.200400529. – DOI – PubMed
- Shao Y, Jin Y, Dong S. Synthesis of gold nanoplates by aspartate reduction of gold chloride. Chem Commun. 2004;9:1104–5. doi: 10.1039/b315732f. – DOI – PubMed
- Si S, Mandal TK. Tryptophan-based peptides to synthesize gold and silver nanoparticles: a mechanistic and kinetic study. Chem-eur J. 2007;13:3160–8. doi: 10.1002/chem.200601492. – DOI – PubMed
- Tan YN, Lee JY, Wang DI. Uncovering the design rules for peptide synthesis of metal nanoparticles. J Am Chem Soc. 2010;132:5677–86. doi: 10.1021/ja907454f. – DOI – PubMed
- Baalousha M, Lead J. Rationalizing nanomaterial sizes measured by atomic force microscopy, flow field-flow fractionation, and dynamic light scattering: sample preparation, polydispersity, and particle structure. Environ Sci Technol. 2012;46:6134–42. doi: 10.1021/es301167x. – DOI – PubMed
- Cheng Y-D, Lin S-Y. Isothermal Fourier transform infrared microspectrosopic studies on the stability kinetics of solid-state intramolecular cyclization of aspartame sweetener. J Agr Food Chem. 2000;48:631–5. doi: 10.1021/jf990595l. – DOI – PubMed
- Khurana HK, Cho IK, Shim JY, Li QX, Jun S. Application of multibounce attenuated total reflectance fourier transform infrared spectroscopy and chemometrics for determination of aspartame in soft drinks. J Agr Food Chem. 2008;56:778–83. doi: 10.1021/jf0724116. – DOI – PubMed
- Beer M, Kessler H, Sutherland G. Spectra of homologous series of monosubstituted amides. 1958;29:1097–104.
- Ning L, De-Ning W, Sheng-Kang Y. Hydrogen-bonding properties of segmented polyether poly (urethane urea) copolymer. Macromolecules. 1997;30:4405–9. doi: 10.1021/ma951386e. – DOI
- Pimentel GC, McClellan AL. The hydrogen bond. WH: Freeman; 1960.
- Chen S, Kimura K. Synthesis and characterization of carboxylate-modified gold nanoparticle powders dispersible in water. Langmuir. 1999;15:1075–82. doi: 10.1021/la9812828. – DOI
- Lin V, Colthup NB, Fateley WG, Grasselli JG. The handbook of infrared and raman characteristic frequencies of organic molecules. Boston: Academic Press; 1991.
- Pattanaargson S, Chuapradit C, Srisukphonraruk S. Aspartame degradation in solutions at various pH conditions. J Food Sci. 2001;66:808–9. doi: 10.1111/j.1365-2621.2001.tb15177.x. – DOI
- AswathyAromal S, Philip D. Green synthesis of gold nanoparticles using Trigonella foenum-graecum and its size-dependent catalytic activity. Spectrochim Acta Part A. 2012;95:1–5. doi: 10.1016/j.saa.2012.05.083. – DOI – PubMed
- Link S, El-Sayed MA. Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods. J Phys Chem B. 1999;103:8410–26. doi: 10.1021/jp9917648. – DOI
- Negishi Y, Tsukuda T. One-pot preparation of subnanometer-sized gold clusters via reduction and stabilization by meso-2, 3-dimercaptosuccinic acid. J Am Chem Soc. 2003;125:4046–7. doi: 10.1021/ja0297483. – DOI – PubMed
- Kumar A, Mandal S, Selvakannan P, Pasricha R, Mandale A, Sastry M. Investigation into the interaction between surface-bound alkylamines and gold nanoparticles. Langmuir. 2003;19:6277–82. doi: 10.1021/la034209c. – DOI – PubMed
- Wang X, Zhang X, Xu X, Zhang L. The LiCl effect on the conformation of lentinan in DMSO. Biopolymers. 2012;97:840–5. doi: 10.1002/bip.22084. – DOI – PubMed
- Çakir S, Coskun E, Biçer E, Çakir O. Electrochemical study of the complexes of aspartamewith Cu (II), Ni (II) and Zn (II) ions in the aqueous medium. Carbohyd Res. 2003;338:1217–22. doi: 10.1016/S0008-6215(03)00111-3. – DOI – PubMed
- Yin Y, Chen M, Zhou S, Wu L. A general and feasible method for the fabrication of functional nanoparticles in mesoporous silica hollow composite spheres. J Mater Chem. 2012;22:11245–51. doi: 10.1039/c2jm31138k. – DOI
- Chiu C-Y, Chung P-J, Lao K-U, Liao C-W, Huang MH. Facet-dependent catalytic activity of gold nanocubes, octahedra, and rhombic dodecahedra toward 4-nitroaniline reduction. J Phys Chem C. 2012;116:23757–63. doi: 10.1021/jp307768h. – DOI
- Dauthal P, Mukhopadhyay M. Prunus domestica fruit extract-mediated synthesis of gold nanoparticles and its catalytic activity for 4-nitrophenol reduction. Ind Eng Chem Res. 2012;51:13014–20. doi: 10.1021/ie300369g. – DOI
- Das SK, Dickinson C, Lafir F, Brougham DF, Marsili E. Synthesis, characterization and catalytic activity of gold nanoparticles biosynthesized with Rhizopus oryzae protein extract. Green Chem. 2012;14:1322–34. doi: 10.1039/c2gc16676c. – DOI
Leave a Reply