Surfeit human gene cluster
Surfeit is a human gene cluster that consists of a group of very tightly linked genes on chromosome 9 that do not share sequence similarity. Genes in this cluster are numbered 1 through 6: SURF1, SURF2, SURF3, SURF4, SURF5, and SURF6.
- Duhig T, Ruhrberg C, Mor O, Fried M (August 1998). “The human Surfeit locus”. Genomics. 52 (1): 72–8. doi:10.1006/geno.1998.5372. PMID 9740673.
Surfeit locus protein 1 (SURF1)
Surfeit locus protein 1 (SURF1) is a protein that in humans is encoded by the SURF1gene. The protein encoded by SURF1 is a component of the mitochondrial translation regulation assembly intermediate of cytochrome c oxidase complex (MITRAC complex), which is involved in the regulation of cytochrome c oxidase assembly. Defects in this gene are a cause of Leigh syndrome, a severe neurological disorder that is commonly associated with systemic cytochrome c oxidase (complex IV) deficiency, and Charcot-Marie-Tooth disease 4K (CMT4K).
- Yon J, Jones T, Garson K, Sheer D, Fried M (March 1993). “The organization and conservation of the human Surfeit gene cluster and its localization telomeric to the c-abl and can proto-oncogenes at chromosome band 9q34.1”. Human Molecular Genetics. 2 (3): 237–40. doi:10.1093/hmg/2.3.237. PMID 8499913.
- Zhu Z, Yao J, Johns T, Fu K, De Bie I, Macmillan C, Cuthbert AP, Newbold RF, Wang J, Chevrette M, Brown GK, Brown RM, Shoubridge EA (December 1998). “SURF1, encoding a factor involved in the biogenesis of cytochrome c oxidase, is mutated in Leigh syndrome”. Nature Genetics. 20 (4): 337–43. doi:10.1038/3804. PMID 9843204. S2CID 12584110.
- “SURF1 – Surfeit locus protein 1 – Homo sapiens (Human) – SURF1 gene & protein”. www.uniprot.org. Retrieved 2018-08-07. This article incorporates text available under the CC BY 4.0 license.
- h “UniProt: the universal protein knowledgebase”. Nucleic Acids Research. 45 (D1): D158–D169. January 2017. doi:10.1093/nar/gkw1099. PMC 5210571. PMID 27899622.
- “Entrez Gene: SURF1 surfeit 1”. This article incorporates text from this source, which is in the public domain.
- Echaniz-Laguna A, Ghezzi D, Chassagne M, Mayençon M, Padet S, Melchionda L, Rouvet I, Lannes B, Bozon D, Latour P, Zeviani M, Mousson de Camaret B (October 2013). “SURF1 deficiency causes demyelinating Charcot-Marie-Tooth disease”. Neurology. 81 (17): 1523–30. doi:10.1212/WNL.0b013e3182a4a518. PMC 3888171. PMID 24027061.
Structure
SURF1 is located on the q arm of chromosome 9 in position 34.2 and has 9 exons. The SURF1 gene produces a 33.3 kDa protein composed of 300 amino acids. The protein is a member of the SURF1 family, which includes the related yeast protein SHY1 and rickettsial protein RP733. The gene is located in the surfeit gene cluster, a group of very tightly linked genes that do not share sequence similarity, where it shares a bidirectional promoter with SURF2 on the opposite strand. SURF1 is a multi-pass protein that contains two transmembrane regions, one 19 amino acids in length from positions 61-79 and the other 17 amino acids in length from positions 274–290.
- “SURF1 – Surfeit locus protein 1 – Homo sapiens (Human) – SURF1 gene & protein”. www.uniprot.org. Retrieved 2018-08-07. This article incorporates text available under the CC BY 4.0 license.
- “UniProt: the universal protein knowledgebase”. Nucleic Acids Research. 45 (D1): D158–D169. January 2017. doi:10.1093/nar/gkw1099. PMC 5210571. PMID 27899622.
- “Entrez Gene: SURF1 surfeit 1”. This article incorporates text from this source, which is in the public domain.
- Echaniz-Laguna A, Ghezzi D, Chassagne M, Mayençon M, Padet S, Melchionda L, Rouvet I, Lannes B, Bozon D, Latour P, Zeviani M, Mousson de Camaret B (October 2013). “SURF1 deficiency causes demyelinating Charcot-Marie-Tooth disease”. Neurology. 81 (17): 1523–30. doi:10.1212/WNL.0b013e3182a4a518. PMC 3888171. PMID 24027061.
- Yao D. “Cardiac Organellar Protein Atlas Knowledgebase (COPaKB) —— Protein Information”. amino.heartproteome.org. Retrieved 2018-08-07.
- Zong NC, Li H, Li H, Lam MP, Jimenez RC, Kim CS, Deng N, Kim AK, Choi JH, Zelaya I, Liem D, Meyer D, Odeberg J, Fang C, Lu HJ, Xu T, Weiss J, Duan H, Uhlen M, Yates JR, Apweiler R, Ge J, Hermjakob H, Ping P (October 2013). “Integration of cardiac proteome biology and medicine by a specialized knowledgebase”. Circulation Research. 113 (9): 1043–53. doi:10.1161/CIRCRESAHA.113.301151. PMC 4076475. PMID 23965338.
Function
This gene encodes a protein localized to the inner mitochondrial membrane and thought to be involved in the biogenesis of the cytochrome c oxidase complex. SURF1 is a multi-pass membrane protein component of the mitochondrial translation regulation assembly intermediate of cytochrome c oxidase complex (MITRAC complex). The MITRAC complex regulates cytochrome c oxidase assembly by acting as a central assembly intermediate, receiving subunits imported to the inner mitochondrial membrane and regulating COX1 mRNA translation.
- “SURF1 – Surfeit locus protein 1 – Homo sapiens (Human) – SURF1 gene & protein”. www.uniprot.org. Retrieved 2018-08-07. This article incorporates text available under the CC BY 4.0 license.
- “UniProt: the universal protein knowledgebase”. Nucleic Acids Research. 45 (D1): D158–D169. January 2017. doi:10.1093/nar/gkw1099. PMC 5210571. PMID 27899622.
- “Entrez Gene: SURF1 surfeit 1”. This article incorporates text from this source, which is in the public domain.
- Dennerlein S, Oeljeklaus S, Jans D, Hellwig C, Bareth B, Jakobs S, Deckers M, Warscheid B, Rehling P (September 2015). “MITRAC7 Acts as a COX1-Specific Chaperone and Reveals a Checkpoint during Cytochrome c Oxidase Assembly”. Cell Reports. 12 (10): 1644–55. doi:10.1016/j.celrep.2015.08.009. hdl:11858/00-001M-0000-0028-466E-C. PMID 26321642.
Clinical significance
Mutations in SURF1 have been associated with mitochondrial complex IV (cytochrome c oxidase) deficiency with clinical manifestations of Leigh syndrome and Charcot-Marie-Tooth disease 4K (CMT4K).
- “SURF1 – Surfeit locus protein 1 – Homo sapiens (Human) – SURF1 gene & protein”. www.uniprot.org. Retrieved 2018-08-07. This article incorporates text available under the CC BY 4.0 license.
- “UniProt: the universal protein knowledgebase”. Nucleic Acids Research. 45 (D1): D158–D169. January 2017. doi:10.1093/nar/gkw1099. PMC 5210571. PMID 27899622.
- Péquignot MO, Dey R, Zeviani M, Tiranti V, Godinot C, Poyau A, Sue C, Di Mauro S, Abitbol M, Marsac C (May 2001). “Mutations in the SURF1 gene associated with Leigh syndrome and cytochrome C oxidase deficiency”. Human Mutation. 17 (5): 374–81. doi:10.1002/humu.1112. PMID 11317352. S2CID 26557551.
Mitochondrial complex IV deficiency
Mitochondrial complex IV deficiency is a disorder of the mitochondrial respiratory chain with heterogeneous clinical manifestations, ranging from isolated myopathy to severe multisystem disease affecting several tissues and organs. Features include hypertrophic cardiomyopathy, hepatomegaly and liver dysfunction, hypotonia, muscle weakness, exercise intolerance, developmental delay, delayed motor development and mental retardation. Some affected individuals manifest a fatal hypertrophic cardiomyopathy resulting in neonatal death. A subset of patients manifest Leigh syndrome. In patients presenting with pathogenic mutations resulting in dysfunctioning SURF1, cytochrome c oxidase activity is likely to be diminished in one or more types of tissues.[15][7][8]
- “SURF1 – Surfeit locus protein 1 – Homo sapiens (Human) – SURF1 gene & protein”. www.uniprot.org. Retrieved 2018-08-07. This article incorporates text available under the CC BY 4.0 license.
- “UniProt: the universal protein knowledgebase”. Nucleic Acids Research. 45 (D1): D158–D169. January 2017. doi:10.1093/nar/gkw1099. PMC 5210571. PMID 27899622.
- “Mitochondrial complex IV deficiency”. www.uniprot.org. Retrieved 2018-08-07.
Leigh syndrome
Leigh syndrome is an early-onset progressive neurodegenerative disorder characterized by the presence of focal, bilateral lesions in one or more areas of the central nervous system including the brainstem, thalamus, basal ganglia, cerebellum and spinal cord. Clinical features depend on which areas of the central nervous system are involved and include subacute onset of psychomotor retardation, hypotonia, ataxia, weakness, vision loss, eye movement abnormalities, seizures, and dysphagia. There have been over 30 different mutations in SURF1 that have been associated with Leigh syndrome. These mutations, which comprise at least 10 missense or nonsense, 8 splice site, and 12 insertion or deletion mutations, are believed to be the result of dysfunctional SURF1 that results in Leigh syndrome and cytochrome c oxidase deficiency. The most common mutation is believed to be 312_321del 311_312insAT.
- “SURF1 – Surfeit locus protein 1 – Homo sapiens (Human) – SURF1 gene & protein”. www.uniprot.org. Retrieved 2018-08-07. This article incorporates text available under the CC BY 4.0 license.
- “UniProt: the universal protein knowledgebase”. Nucleic Acids Research. 45 (D1): D158–D169. January 2017. doi:10.1093/nar/gkw1099. PMC 5210571. PMID 27899622.
- Péquignot MO, Dey R, Zeviani M, Tiranti V, Godinot C, Poyau A, Sue C, Di Mauro S, Abitbol M, Marsac C (May 2001). “Mutations in the SURF1 gene associated with Leigh syndrome and cytochrome C oxidase deficiency”. Human Mutation. 17 (5): 374–81. doi:10.1002/humu.1112. PMID 11317352. S2CID 26557551.
Charcot-Marie-Tooth disease 4K (CMT4K)
Charcot-Marie-Tooth disease 4K (CMT4K) is an autosomal recessive, demyelinating form of Charcot-Marie-Tooth disease, a disorder of the peripheral nervous system, characterized by progressive weakness and atrophy, initially of the peroneal muscles and later of the distal muscles of the arms. Charcot-Marie-Tooth disease is classified in two main groups on the basis of electrophysiologic properties and histopathology: primary peripheral demyelinating neuropathies (designated CMT1 when they are dominantly inherited) and primary peripheral axonal neuropathies (CMT2). Demyelinating neuropathies are characterized by severely reduced nerve conduction velocities (less than 38 m/sec), segmental demyelination and remyelination with onion bulb formations on nerve biopsy, slowly progressive distal muscle atrophy and weakness, absent deep tendon reflexes, and hollow feet. By convention, autosomal recessive forms of demyelinating Charcot-Marie-Tooth disease are designated CMT4. CMT4K patients manifest upper and lower limbs involvement. Some affected individuals have nystagmus, polyneuropathy, putaminal and periaqueductal lesions, and late-onset cerebellar ataxia. This disease, when associated with mutations in SURF1, has been found to be linked to cytochrome c oxidase deficiency. Variants associated with this CMT4K have included a homozygous splice site mutation, c.107-2A>G, a missense mutation, c.574C>T, and a deletion, c.799_800del.
- “SURF1 – Surfeit locus protein 1 – Homo sapiens (Human) – SURF1 gene & protein”. www.uniprot.org. Retrieved 2018-08-07. This article incorporates text available under the CC BY 4.0 license.
- “UniProt: the universal protein knowledgebase”. Nucleic Acids Research. 45 (D1): D158–D169. January 2017. doi:10.1093/nar/gkw1099. PMC 5210571. PMID 27899622.
- Echaniz-Laguna A, Ghezzi D, Chassagne M, Mayençon M, Padet S, Melchionda L, Rouvet I, Lannes B, Bozon D, Latour P, Zeviani M, Mousson de Camaret B (October 2013). “SURF1 deficiency causes demyelinating Charcot-Marie-Tooth disease”. Neurology. 81 (17): 1523–30. doi:10.1212/WNL.0b013e3182a4a518. PMC 3888171. PMID 24027061.
Interactions
SURF1 has been shown to have 11 binary protein-protein interactions including 8 co-complex interactions. SURF1 interacts with COA3 as part of the mitochondrial translation regulation assembly intermediate of cytochrome c oxidase complex (MITRAC complex). PTGES3, SLC25A5, COX6C, COX14, COA1 have all also been found to interact with SURF1.
- “SURF1 – Surfeit locus protein 1 – Homo sapiens (Human) – SURF1 gene & protein”. www.uniprot.org. Retrieved 2018-08-07. This article incorporates text available under the CC BY 4.0 license.
- “UniProt: the universal protein knowledgebase”. Nucleic Acids Research. 45 (D1): D158–D169. January 2017. doi:10.1093/nar/gkw1099. PMC 5210571. PMID 27899622.
- IntAct. “IntAct Portal”. www.ebi.ac.uk. Retrieved 2018-08-07.
SURF2
SURF2 is a protein which in humans is encoded by the SURF2gene.SURF2 is a member of the surfeit gene family. The SURF2 molecule interacts with beta-1, 4-Gal-T3, uPAR, and WDR20. As part of the surfeit gene cluster, SURF2 is one of several tightly linked genes that do not share sequence similarity. SURF2 maps to human chromosome 9q34.2 and shares a bidirectional promoter with SURF1 on the opposite strand. A bidirectional promoter activity is expected in the intergenic region between SURF1 and SURF2, as seen in mice.
- Lennard A, Gaston K, Fried M (November 1994). “The Surf-1 and Surf-2 genes and their essential bidirectional promoter elements are conserved between mouse and human”. DNA Cell Biol. 13 (11): 1117–26. doi:10.1089/dna.1994.13.1117. PMID 7702754.
- Duhig T, Ruhrberg C, Mor O, Fried M (August 1998). “The human Surfeit locus”. Genomics. 52 (1): 72–8. doi:10.1006/geno.1998.5372. PMID 9740673. “SURF2 Protein Human Recombinant | Surfeit 2 Antigen | ProSpec”
60S ribosomal protein L7a (REDIRECTED FROM SURF3)
60S ribosomal protein L7a is a protein that in humans is encoded by the RPL7A gene.
Cytoplasmic ribosomes, organelles that catalyze protein synthesis, consist of a small 40S subunit and a large 60S subunit. Together these subunits are composed of 4 RNA species and approximately 80 structurally distinct proteins. This gene encodes a ribosomal protein that is a component of the 60S subunit. The protein belongs to the L7AE family of ribosomal proteins. It can interact with a subclass of nuclear hormone receptors, including thyroid hormone receptor, and inhibit their ability to transactivate by preventing their binding to their DNA response elements. This gene is included in the surfeit gene cluster, a group of very tightly linked genes that do not share sequence similarity. It is co-transcribed with the U24, U36a, U36b, and U36c small nucleolar RNA genes, which are located in its second, fifth, fourth, and sixth introns, respectively. This gene rearranges with the trk proto-oncogene to form the chimeric oncogene trk-2h, which encodes an oncoprotein consisting of the N terminus of ribosomal protein L7a fused to the receptor tyrosine kinase domain of trk. As is typical for genes encoding ribosomal proteins, there are multiple processed pseudogenes of this gene dispersed through the genome.
- Ziemiecki A, Muller RG, Fu XC, Hynes NE, Kozma S (Feb 1990). “Oncogenic activation of the human trk proto-oncogene by recombination with the ribosomal large subunit protein L7a“. EMBO J. 9 (1): 191–6. doi:10.1002/j.1460-2075.1990.tb08095.x. PMC 551645. PMID 2403926.
- Kozma SC, Redmond SM, Fu XC, Saurer SM, Groner B, Hynes NE (May 1988). “Activation of the receptor kinase domain of the trk oncogene by recombination with two different cellular sequences“. EMBO J. 7 (1): 147–54. doi:10.1002/j.1460-2075.1988.tb02794.x. PMC 454232. PMID 2966065.
- “Entrez Gene: RPL7A ribosomal protein L7a“.
In molecular biology, U24 is a member of the C/D class of snoRNA which contain the C (UGAUGA) and D (CUGA) box motifs. C/D box snoRNAs have been shown to act as methylation guides for a number of RNA targets. U24 is encoded within an intron of the gene for ribosomal protein L7a in mammals, chicken and Fugu. The U76/SNORD76 snoRNA is found in an intron of the uRNA host gene (UHG) growth arrest specific 5 (GAS5) transcript gene. snoRNAs Z20 and U76 snoRNAs show clear similarity to U24. An experiment that looked at 22 different non-small-cell lung cancer tissues found that SNORD33, SNORD66 and SNORD76 were over-expressed relative to matched noncancerous lung tissues.
- Qu LH, Henry Y, Nicoloso M, Michot B, Azum MC, Renalier MH, Caizergues-Ferrer M, Bachellerie JP (July 1995). “U24, a novel intron-encoded small nucleolar RNA with two 12 nt long, phylogenetically conserved complementarities to 28S rRNA”. Nucleic Acids Research. 23 (14): 2669–76. doi:10.1093/nar/23.14.2669. PMC 307091. PMID 7651828.
- Nicoloso M, Qu LH, Michot B, Bachellerie JP (July 1996). “Intron-encoded, antisense small nucleolar RNAs: the characterization of nine novel species points to their direct role as guides for the 2′-O-ribose methylation of rRNAs”. Journal of Molecular Biology. 260 (2): 178–95. doi:10.1006/jmbi.1996.0391. PMID 8764399.
- Kiss-László Z, Henry Y, Bachellerie JP, Caizergues-Ferrer M, Kiss T (June 1996). “Site-specific ribose methylation of preribosomal RNA: a novel function for small nucleolar RNAs”. Cell. 85 (7): 1077–88. doi:10.1016/S0092-8674(00)81308-2. PMID 8674114. S2CID 10418885.
- Gilley J, Fried M (July 1998). “Evolution of U24 and U36 snoRNAs encoded within introns of vertebrate rpL7a gene homologs: unique features of mammalian U36 variants”. DNA and Cell Biology. 17 (7): 591–602. doi:10.1089/dna.1998.17.591. PMID 9703018.
- Hirose T, Steitz JA (November 2001). “Position within the host intron is critical for efficient processing of box C/D snoRNAs in mammalian cells”. Proceedings of the National Academy of Sciences of the United States of America. 98 (23): 12914–9. Bibcode:2001PNAS…9812914H. doi:10.1073/pnas.231490998. JSTOR 3057015. PMC 60799. PMID 11606788.
- Liao J, Yu L, Mei Y, Guarnera M, Shen J, Li R, Liu Z, Jiang F (July 2010). “Small nucleolar RNA signatures as biomarkers for non-small-cell lung cancer”. Molecular Cancer. 9: 198. doi:10.1186/1476-4598-9-198. PMC 2919450. PMID 20663213.
In molecular biology, snoRNA U36 (also known as SNORD36) is a non-coding RNA (ncRNA) molecule which functions in the biogenesis (modification) of other small nuclear RNAs (snRNAs). This type of modifying RNA is located in the nucleolus of the eukaryotic cell which is a major site of snRNA biogenesis. It is known as a small nucleolar RNA (snoRNA) and also often referred to as a guide RNA. snoRNA U36 is a member of the C/D box class of snoRNAs which contain the conserved sequence motifs known as the C box (UGAUGA) and the D box (CUGA). Most of the members of the box C/D family function in directing site-specific 2′-O-methylation of substrate RNAs. U36 is encoded within the intron of ribosomal protein rpL7a, and has two regions of complementarity to 18S and 28S ribosomal RNA. This complementarity suggests that U36 acts as a 2′-O-ribose methylation guide. This snoRNA is also related to other snoRNAs (snoR47 and Z100) identified in the rice plant Oryza sativa.
- Galardi, S.; Fatica, A.; Bachi, A.; Scaloni, A.; Presutti, C.; Bozzoni, I. (October 2002). “Purified Box C/D snoRNPs Are Able to Reproduce Site-Specific 2′-O-Methylation of Target RNA in Vitro”. Molecular and Cellular Biology. 22 (19): 6663–6668. doi:10.1128/MCB.22.19.6663-6668.2002. PMC 134041. PMID 12215523.
- Nicoloso M, Qu LH, Michot B, Bachellerie JP (1996). “Intron-encoded, antisense small nucleolar RNAs: the characterization of nine novel species points to their direct role as guides for the 2′-O-ribose methylation of rRNAs”. J. Mol. Biol. 260 (2): 178–95. doi:10.1006/jmbi.1996.0391. PMID 8764399.
- Gilley J, Fried M (1998). “Evolution of U24 and U36 snoRNAs encoded within introns of vertebrate rpL7a gene homologs: unique features of mammalian U36 variants”. DNA Cell Biol. 17 (7): 591–602. doi:10.1089/dna.1998.17.591. PMID 9703018.
- Liang D, Zhou H, Zhang P, et al. (2002). “A novel gene organization: intronic snoRNA gene clusters from Oryza sativa”. Nucleic Acids Res. 30 (14): 3262–72. doi:10.1093/nar/gkf426. PMC 135747. PMID 12136108.
SURF4
Surfeit locus protein 4 or Surf4 is a protein involved in regulating export of some proteins from the endoplasmic reticulum to the golgi bodies. Surf4 is involved in trafficking soluble (i.e. non-membrane-bound) proteins, namely lipoproteins and PCSK9. It recognizes cargo proteins via a three-amino-acid sequence near the N-termini. The related protein in yeast is called Erv29p. This gene is named based on its location in the surfeit gene cluster, composed of six housekeeping genes that do not share sequence similarity. The encoded protein is a conserved integral membrane protein containing multiple putative transmembrane regions. Surf4’s yeast homolog is directly required for packaging glycosylated pro-alpha-factor into COPII vesicles. Eliminating Surf4 in the liver reduces the amount of lipid in the plasma and prevents atherosclerosis in mice.
- Sun S, Tang X, Guo Y, Hu J (August 2021). “Endoplasmic reticulum composition and form: Proteins in and out”. Current Opinion in Cell Biology. 71: 1–6. doi:10.1016/j.ceb.2021.01.008. PMID 33611096. S2CID 231987943. “SURF4 Gene – Surfeit 4”. Retrieved 8 June 2022. “Entrez Gene: SURF4 surfeit 4”.
MED22 (REDIRECTED FROM SURF5)
Mediator of RNA polymerase II transcription subunit 22 is an enzyme that in humans is encoded by the MED22gene.
Yon J, Jones T, Garson K, Sheer D, Fried M (Mar 1993). “The organization and conservation of the human Surfeit gene cluster and its localization telomeric to the c-abl and can proto-oncogenes at chromosome band 9q34.1”. Human Molecular Genetics. 2 (3): 237–40. doi:10.1093/hmg/2.3.237. PMID 8499913.
Sato S, Tomomori-Sato C, Parmely TJ, Florens L, Zybailov B, Swanson SK, Banks CA, Jin J, Cai Y, Washburn MP, Conaway JW, Conaway RC (Jun 2004). “A set of consensus mammalian mediator subunits identified by multidimensional protein identification technology”. Molecular Cell. 14 (5): 685–91. doi:10.1016/j.molcel.2004.05.006. PMID 15175163.
Function
This gene is located in the surfeit gene cluster, a group of very tightly linked housekeeping genes that do not share sequence similarity. The gene is oriented in a head-to-head fashion with RPL7A (SURF3) and the two genes share a bidirectional promoter. The encoded proteins are localized to the cytoplasm. Two alternative transcript variants encoding different isoforms have been identified for this gene. “Entrez Gene: SURF5 surfeit 5”
Interactions
MED22 has been shown to interact with MED30.
- Sato S, Tomomori-Sato C, Banks CA, Sorokina I, Parmely TJ, Kong SE, Jin J, Cai Y, Lane WS, Brower CS, Conaway RC, Conaway JW (Apr 2003). “Identification of mammalian Mediator subunits with similarities to yeast Mediator subunits Srb5, Srb6, Med11, and Rox3”. The Journal of Biological Chemistry. 278 (17): 15123–7. doi:10.1074/jbc.C300054200. PMID 12584197
Model organisms
Model organisms have been used in the study of MED22 function. A conditional knockout mouse line called Med22tm1a(EUCOMM)Wtsi was generated at the Wellcome Trust Sanger Institute. Male and female animals underwent a standardized phenotypic screen to determine the effects of deletion. Additional screens performed: – In-depth immunological phenotyping.
- Gerdin AK (2010). “The Sanger Mouse Genetics Programme: high throughput characterisation of knockout mice”. Acta Ophthalmologica. 88. doi:10.1111/j.1755-3768.2010.4142.x. S2CID 85911512. “International Mouse Phenotyping Consortium”.
- Skarnes WC, Rosen B, West AP, Koutsourakis M, Bushell W, Iyer V, Mujica AO, Thomas M, Harrow J, Cox T, Jackson D, Severin J, Biggs P, Fu J, Nefedov M, de Jong PJ, Stewart AF, Bradley A (Jun 2011). “A conditional knockout resource for the genome-wide study of mouse gene function”. Nature. 474 (7351): 337–42. doi:10.1038/nature10163. PMC 3572410. PMID 21677750.
- Dolgin E (Jun 2011). “Mouse library set to be knockout”. Nature. 474 (7351): 262–3. doi:10.1038/474262a. PMID 21677718. Collins FS, Rossant J, Wurst W (Jan 2007). “A mouse for all reasons”. Cell. 128 (1): 9–13. doi:10.1016/j.cell.2006.12.018. PMID 17218247. S2CID 18872015.
- White JK, Gerdin AK, Karp NA, Ryder E, Buljan M, Bussell JN, Salisbury J, Clare S, Ingham NJ, Podrini C, Houghton R, Estabel J, Bottomley JR, Melvin DG, Sunter D, Adams NC, Tannahill D, Logan DW, Macarthur DG, Flint J, Mahajan VB, Tsang SH, Smyth I, Watt FM, Skarnes WC, Dougan G, Adams DJ, Ramirez-Solis R, Bradley A, Steel KP (Jul 2013). “Genome-wide generation and systematic phenotyping of knockout mice reveals new roles for many genes”. Cell. 154 (2): 452–64. doi:10.1016/j.cell.2013.06.022. PMC 3717207. PMID 23870131. “Infection and Immunity Immunophenotyping (3i) Consortium”.
SURF6
Surfeit locus protein 6 is a protein that in humans is encoded by the SURF6 gene.
This gene is located in the surfeit gene cluster, a group of very tightly linked genes that do not share sequence similarity. The gene demonstrates features of a housekeeping gene, being ubiquitously expressed, and the encoded protein has been localized to the nucleolus. The protein includes motifs found in both the mouse and fish orthologs, which suggests a putative function as a nucleolar-matrix protein with nucleic acid-binding properties, based on characteristics determined in mouse.
- Duhig T, Ruhrberg C, Mor O, Fried M (May 1999). “The human Surfeit locus”. Genomics. 52 (1): 72–8. doi:10.1006/geno.1998.5372. PMID 9740673. “Entrez Gene: SURF6 surfeit 6”.
Further reading
SURF1
- Shoubridge EA (2001). “Cytochrome c oxidase deficiency”. American Journal of Medical Genetics. 106 (1): 46–52. doi:10.1002/ajmg.1378. PMID 11579424.
- Lennard A, Gaston K, Fried M (November 1994). “The Surf-1 and Surf-2 genes and their essential bidirectional promoter elements are conserved between mouse and human”. DNA and Cell Biology. 13 (11): 1117–26. doi:10.1089/dna.1994.13.1117. PMID 7702754.
- Duhig T, Ruhrberg C, Mor O, Fried M (August 1998). “The human Surfeit locus”. Genomics. 52 (1): 72–8. doi:10.1006/geno.1998.5372. PMID 9740673.
- Yao J, Shoubridge EA (December 1999). “Expression and functional analysis of SURF1 in Leigh syndrome patients with cytochrome c oxidase deficiency”. Human Molecular Genetics. 8 (13): 2541–9. doi:10.1093/hmg/8.13.2541. PMID 10556303.
- Teraoka M, Yokoyama Y, Ninomiya S, Inoue C, Yamashita S, Seino Y (December 1999). “Two novel mutations of SURF1 in Leigh syndrome with cytochrome c oxidase deficiency”. Human Genetics. 105 (6): 560–3. doi:10.1007/s004390051145. PMID 10647889.
- Poyau A, Buchet K, Bouzidi MF, Zabot MT, Echenne B, Yao J, Shoubridge EA, Godinot C (February 2000). “Missense mutations in SURF1 associated with deficient cytochrome c oxidase assembly in Leigh syndrome patients”. Human Genetics. 106 (2): 194–205. doi:10.1007/s004390051028. PMID 10746561.
- Ogawa Y, Naito E, Ito M, Yokota I, Saijo T, Shinahara K, Kuroda Y (March 2002). “Three novel SURF-1 mutations in Japanese patients with Leigh syndrome”. Pediatric Neurology. 26 (3): 196–200. doi:10.1016/S0887-8994(01)00382-4. PMID 11955926.
- Capková M, Hansíková H, Godinot C, Houst’ková H, Houstĕk J, Zeman J (October 2002). “[A new missense mutation of 574C>T in the SURF1 gene–biochemical and molecular genetic study in seven children with Leigh syndrome]”. Casopis Lekaru Ceskych. 141 (20): 636–41. PMID 12515039.
- Sacconi S, Salviati L, Sue CM, Shanske S, Davidson MM, Bonilla E, Naini AB, De Vivo DC, DiMauro S (February 2003). “Mutation screening in patients with isolated cytochrome c oxidase deficiency”. Pediatric Research. 53 (2): 224–30. doi:10.1203/01.PDR.0000048100.91730.6A. hdl:11577/1368344. PMID 12538779. S2CID 12496207.
- Rossi A, Biancheri R, Bruno C, Di Rocco M, Calvi A, Pessagno A, Tortori-Donati P (2003). “Leigh Syndrome with COX deficiency and SURF1 gene mutations: MR imaging findings”. AJNR. American Journal of Neuroradiology. 24 (6): 1188–91. PMC 8148997. PMID 12812953.
- Moslemi AR, Tulinius M, Darin N, Aman P, Holme E, Oldfors A (October 2003). “SURF1 gene mutations in three cases with Leigh syndrome and cytochrome c oxidase deficiency”. Neurology. 61 (7): 991–3. doi:10.1212/01.wnl.0000082391.98672.0a. PMID 14557577. S2CID 31028913.
- Williams SL, Valnot I, Rustin P, Taanman JW (February 2004). “Cytochrome c oxidase subassemblies in fibroblast cultures from patients carrying mutations in COX10, SCO1, or SURF1”. The Journal of Biological Chemistry. 279 (9): 7462–9. doi:10.1074/jbc.M309232200. PMID 14607829.
- Salviati L, Freehauf C, Sacconi S, DiMauro S, Thoma J, Tsai AC (July 2004). “Novel SURF1 mutation in a child with subacute encephalopathy and without the radiological features of Leigh Syndrome”. American Journal of Medical Genetics. Part A. 128A (2): 195–8. doi:10.1002/ajmg.a.30073. hdl:11577/1368341. PMID 15214016. S2CID 19332655.
- Smith D, Gray J, Mitchell L, Antholine WE, Hosler JP (May 2005). “Assembly of cytochrome-c oxidase in the absence of assembly protein Surf1p leads to loss of the active site heme”. The Journal of Biological Chemistry. 280 (18): 17652–6. doi:10.1074/jbc.C500061200. PMID 15764605.
- Wilnai Y, Seaver LH, Enns GM (September 2012). “Atypical amyoplasia congenita in an infant with Leigh syndrome: a mitochondrial cause of severe contractures?”. American Journal of Medical Genetics. Part A. 158A (9): 2353–7. doi:10.1002/ajmg.a.35533. PMID 22887355. S2CID 1163142.
- Timothy J, Geller T (October 2009). “SURF-1 gene mutation associated with leukoencephalopathy in a 2-year-old”. Journal of Child Neurology. 24 (10): 1296–301. doi:10.1177/0883073809333543. PMID 19805825. S2CID 8415901.
- van Riesen AK, Antonicka H, Ohlenbusch A, Shoubridge EA, Wilichowski EK (April 2006). “Maternal segmental disomy in Leigh syndrome with cytochrome c oxidase deficiency caused by homozygous SURF1 mutation”. Neuropediatrics. 37 (2): 88–94. doi:10.1055/s-2006-924227. PMID 16773507.
- Yüksel A, Seven M, Cetincelik U, Yeşil G, Köksal V (June 2006). “Facial dysmorphism in Leigh syndrome with SURF-1 mutation and COX deficiency”. Pediatric Neurology. 34 (6): 486–9. doi:10.1016/j.pediatrneurol.2005.10.020. PMID 16765830.
- Coenen MJ, Smeitink JA, Farhoud MH, Nijtmans LG, Rodenburg R, Janssen A, van Kaauwen EP, Trijbels FJ, van den Heuvel LP (February 2006). “The first patient diagnosed with cytochrome c oxidase deficient Leigh syndrome: progress report”. Journal of Inherited Metabolic Disease. 29 (1): 212–3. doi:10.1007/s10545-006-0185-3. PMID 16601896. S2CID 27796999.
- Bruno C, Biancheri R, Garavaglia B, Biedi C, Rossi A, Lamba LD, Bado M, Greco M, Zeviani M, Minetti C (March 2002). “A novel mutation in the SURF1 gene in a child with Leigh disease, peripheral neuropathy, and cytochrome-c oxidase deficiency”. Journal of Child Neurology. 17 (3): 233–6. doi:10.1177/088307380201700318. PMID 12026244. S2CID 27532055.
- Williams SL, Taanman JW, Hansíková H, Houst’ková H, Chowdhury S, Zeman J, Houstek J (August 2001). “A novel mutation in SURF1 causes skipping of exon 8 in a patient with cytochrome c oxidase-deficient leigh syndrome and hypertrichosis”. Molecular Genetics and Metabolism. 73 (4): 340–3. doi:10.1006/mgme.2001.3206. PMID 11509016.
- Rahman S, Brown RM, Chong WK, Wilson CJ, Brown GK (June 2001). “A SURF1 gene mutation presenting as isolated leukodystrophy”. Annals of Neurology. 49 (6): 797–800. doi:10.1002/ana.1060. PMID 11409433. S2CID 29980066.
- Von Kleist-Retzow JC, Yao J, Taanman JW, Chantrel K, Chretien D, Cormier-Daire V, Rotig A, Munnich A, Rustin P, Shoubridge EA (February 2001). “Mutations in SURF1 are not specifically associated with Leigh syndrome”. Journal of Medical Genetics. 38 (2): 109–13. doi:10.1136/jmg.38.2.109. PMC 1734810. PMID 11288709.
- Santoro L, Carrozzo R, Malandrini A, Piemonte F, Patrono C, Villanova M, Tessa A, Palmeri S, Bertini E, Santorelli FM (August 2000). “A novel SURF1 mutation results in Leigh syndrome with peripheral neuropathy caused by cytochrome c oxidase deficiency”. Neuromuscular Disorders. 10 (6): 450–3. doi:10.1016/s0960-8966(99)00122-4. PMID 10899453. S2CID 2885506.
SURF3
- Wool IG, Chan YL, Glück A (1996). “Structure and evolution of mammalian ribosomal proteins”. Biochem. Cell Biol. 73 (11–12): 933–47. doi:10.1139/o95-101. PMID 8722009.
- Colombo P, Fried M (1992). “Functional elements of the ribosomal protein L7a (rpL7a) gene promoter region and their conservation between mammals and birds”. Nucleic Acids Res. 20 (13): 3367–73. doi:10.1093/nar/20.13.3367. PMC 312491. PMID 1630908.
- Ben-Ishai R, Scharf R, Sharon R, Kapten I (1990). “A human cellular sequence implicated in trk oncogene activation is DNA damage inducible”. Proc. Natl. Acad. Sci. U.S.A. 87 (16): 6039–43. Bibcode:1990PNAS…87.6039B. doi:10.1073/pnas.87.16.6039. PMC 54467. PMID 1696715.
- Colombo P, Yon J, Fried M (1992). “The organization and expression of the human L7a ribosomal protein gene”. Biochim. Biophys. Acta. 1129 (1): 93–5. doi:10.1016/0167-4781(91)90218-b. PMID 1756182.
- Burris TP, Nawaz Z, Tsai MJ, O’Malley BW (1995). “A nuclear hormone receptor-associated protein that inhibits transactivation by the thyroid hormone and retinoic acid receptors”. Proc. Natl. Acad. Sci. U.S.A. 92 (21): 9525–9. Bibcode:1995PNAS…92.9525B. doi:10.1073/pnas.92.21.9525. PMC 40834. PMID 7568167.
- Qu LH, Henry Y, Nicoloso M, et al. (1995). “U24, a novel intron-encoded small nucleolar RNA with two 12 nt long, phylogenetically conserved complementarities to 28S rRNA”. Nucleic Acids Res. 23 (14): 2669–76. doi:10.1093/nar/23.14.2669. PMC 307091. PMID 7651828.
- Maruyama K, Sugano S (1994). “Oligo-capping: a simple method to replace the cap structure of eukaryotic mRNAs with oligoribonucleotides”. Gene. 138 (1–2): 171–4. doi:10.1016/0378-1119(94)90802-8. PMID 8125298.
- Seshadri T, Uzman JA, Oshima J, Campisi J (1993). “Identification of a transcript that is down-regulated in senescent human fibroblasts. Cloning, sequence analysis, and regulation of the human L7 ribosomal protein gene”. J. Biol. Chem. 268 (25): 18474–80. doi:10.1016/S0021-9258(17)46650-6. PMID 8360149.
- De Falco S, Russo G, Angiolillo A, Pietropaolo C (1993). “Human L7a ribosomal protein: sequence, structural organization, and expression of a functional gene”. Gene. 126 (2): 227–35. doi:10.1016/0378-1119(93)90371-9. PMID 8482538.
- Yon J, Jones T, Garson K, et al. (1993). “The organization and conservation of the human Surfeit gene cluster and its localization telomeric to the c-abl and can proto-oncogenes at chromosome band 9q34.1”. Hum. Mol. Genet. 2 (3): 237–40. doi:10.1093/hmg/2.3.237. PMID 8499913.
- Nicoloso M, Qu LH, Michot B, Bachellerie JP (1996). “Intron-encoded, antisense small nucleolar RNAs: the characterization of nine novel species points to their direct role as guides for the 2′-O-ribose methylation of rRNAs”. J. Mol. Biol. 260 (2): 178–95. doi:10.1006/jmbi.1996.0391. PMID 8764399.
- Mor O, Duhig T, Fried M (1996). “A high frequency polymorphism in the candidate region for tuberous sclerosis 1 (TSC1) at 9q34”. Ann. Hum. Genet. 60 (Pt 3): 259–60. doi:10.1111/j.1469-1809.1996.tb00429.x. PMID 8800442. S2CID 31900112.
- Russo G, Ricciardelli G, Pietropaolo C (1997). “Different domains cooperate to target the human ribosomal L7a protein to the nucleus and to the nucleoli”. J. Biol. Chem. 272 (8): 5229–35. doi:10.1074/jbc.272.8.5229. PMID 9030593.
- Suzuki Y, Yoshitomo-Nakagawa K, Maruyama K, et al. (1997). “Construction and characterization of a full length-enriched and a 5′-end-enriched cDNA library”. Gene. 200 (1–2): 149–56. doi:10.1016/S0378-1119(97)00411-3. PMID 9373149.
- Kenmochi N, Kawaguchi T, Rozen S, et al. (1998). “A map of 75 human ribosomal protein genes”. Genome Res. 8 (5): 509–23. doi:10.1101/gr.8.5.509. PMID 9582194.
- Gilley J, Fried M (1998). “Evolution of U24 and U36 snoRNAs encoded within introns of vertebrate rpL7a gene homologs: unique features of mammalian U36 variants”. DNA Cell Biol. 17 (7): 591–602. doi:10.1089/dna.1998.17.591. PMID 9703018.
- Lalli E, Ohe K, Hindelang C, Sassone-Corsi P (2000). “Orphan receptor DAX-1 is a shuttling RNA binding protein associated with polyribosomes via mRNA”. Mol. Cell. Biol. 20 (13): 4910–21. doi:10.1128/MCB.20.13.4910-4921.2000. PMC 85942. PMID 10848616.
SURF5
- De Falco S, Russo G, Angiolillo A, Pietropaolo C (Apr 1993). “Human L7a ribosomal protein: sequence, structural organization, and expression of a functional gene”. Gene. 126 (2): 227–35. doi:10.1016/0378-1119(93)90371-9. PMID 8482538.
- Garson K, Duhig T, Armes N, Colombo P, Fried M (Nov 1995). “Surf5: a gene in the tightly clustered mouse surfeit locus is highly conserved and transcribed divergently from the rpL7A (Surf3) gene”. Genomics. 30 (2): 163–70. doi:10.1006/geno.1995.9889. PMID 8586415.
- Garson K, Duhig T, Fried M (1997). “Tissue-specific processing of the Surf-5 and Surf-4 mRNAs”. Gene Expression. 6 (4): 209–18. PMC 6148271. PMID 9196076.
- Duhig T, Ruhrberg C, Mor O, Fried M (Aug 1998). “The human Surfeit locus”. Genomics. 52 (1): 72–8. doi:10.1006/geno.1998.5372. PMID 9740673.
- Angiolillo A, Russo G, Porcellini A, Smaldone S, D’Alessandro F, Pietropaolo C (Feb 2002). “The human homologue of the mouse Surf5 gene encodes multiple alternatively spliced transcripts”. Gene. 284 (1–2): 169–78. doi:10.1016/S0378-1119(02)00379-7. PMID 11891058.
- Sato S, Tomomori-Sato C, Banks CA, Sorokina I, Parmely TJ, Kong SE, Jin J, Cai Y, Lane WS, Brower CS, Conaway RC, Conaway JW (Apr 2003). “Identification of mammalian Mediator subunits with similarities to yeast Mediator subunits Srb5, Srb6, Med11, and Rox3”. The Journal of Biological Chemistry. 278 (17): 15123–7. doi:10.1074/jbc.C300054200. PMID 12584197.
- Sato S, Tomomori-Sato C, Banks CA, Parmely TJ, Sorokina I, Brower CS, Conaway RC, Conaway JW (Dec 2003). “A mammalian homolog of Drosophila melanogaster transcriptional coactivator intersex is a subunit of the mammalian Mediator complex”. The Journal of Biological Chemistry. 278 (50): 49671–4. doi:10.1074/jbc.C300444200. PMID 14576168.
- Tomomori-Sato C, Sato S, Parmely TJ, Banks CA, Sorokina I, Florens L, Zybailov B, Washburn MP, Brower CS, Conaway RC, Conaway JW (Feb 2004). “A mammalian mediator subunit that shares properties with Saccharomyces cerevisiae mediator subunit Cse2”. The Journal of Biological Chemistry. 279 (7): 5846–51. doi:10.1074/jbc.M312523200. PMID 14638676.
- Hillman RT, Green RE, Brenner SE (2005). “An unappreciated role for RNA surveillance”. Genome Biology. 5 (2): R8. doi:10.1186/gb-2004-5-2-r8. PMC 395752. PMID 14759258.
SURF6
- Yon J, Jones T, Garson K, et al. (1993). “The organization and conservation of the human Surfeit gene cluster and its localization telomeric to the c-abl and can proto-oncogenes at chromosome band 9q34.1”. Hum. Mol. Genet. 2 (3): 237–40. doi:10.1093/hmg/2.3.237. PMID 8499913.
- Magoulas C, Fried M (1996). “The Surf-6 gene of the mouse surfeit locus encodes a novel nucleolar protein”. DNA Cell Biol. 15 (4): 305–16. doi:10.1089/dna.1996.15.305. PMID 8639267.
- Bonaldo MF, Lennon G, Soares MB (1997). “Normalization and subtraction: two approaches to facilitate gene discovery”. Genome Res. 6 (9): 791–806. doi:10.1101/gr.6.9.791. PMID 8889548.
- Magoulas C, Zatsepina OV, Jordan PW, et al. (1998). “The SURF-6 protein is a component of the nucleolar matrix and has a high binding capacity for nucleic acids in vitro”. Eur. J. Cell Biol. 75 (2): 174–83. doi:10.1016/s0171-9335(98)80059-9. PMID 9548374.
- Magoulas C, Fried M (2000). “Isolation and genomic analysis of the human surf-6 gene: a member of the Surfeit locus”. Gene. 243 (1–2): 115–23. doi:10.1016/S0378-1119(99)00551-X. PMID 10675619.
- Andersen JS, Lyon CE, Fox AH, et al. (2002). “Directed proteomic analysis of the human nucleolus”. Curr. Biol. 12 (1): 1–11. doi:10.1016/S0960-9822(01)00650-9. PMID 11790298. S2CID 14132033.
- Angiolillo A, Russo G, Porcellini A, et al. (2002). “The human homologue of the mouse Surf5 gene encodes multiple alternatively spliced transcripts”. Gene. 284 (1–2): 169–78. doi:10.1016/S0378-1119(02)00379-7. PMID 11891058.
- Strausberg RL, Feingold EA, Grouse LH, et al. (2003). “Generation and initial analysis of more than 15,000 full-length human and mouse cDNA sequences”. Proc. Natl. Acad. Sci. U.S.A. 99 (26): 16899–903. Bibcode:2002PNAS…9916899M. doi:10.1073/pnas.242603899. PMC 139241. PMID 12477932.
- Ota T, Suzuki Y, Nishikawa T, et al. (2004). “Complete sequencing and characterization of 21,243 full-length human cDNAs”. Nat. Genet. 36 (1): 40–5. doi:10.1038/ng1285. PMID 14702039.
- Gerhard DS, Wagner L, Feingold EA, et al. (2004). “The Status, Quality, and Expansion of the NIH Full-Length cDNA Project: The Mammalian Gene Collection (MGC)”. Genome Res. 14 (10B): 2121–7. doi:10.1101/gr.2596504. PMC 528928. PMID 15489334.
- Andersen JS, Lam YW, Leung AK, et al. (2005). “Nucleolar proteome dynamics”. Nature. 433 (7021): 77–83. Bibcode:2005Natur.433…77A. doi:10.1038/nature03207. PMID 15635413. S2CID 4344740.
Leave a Reply