KIT (gene)

Proto-oncogene c-KIT is the gene encoding the receptor tyrosine kinase protein known as tyrosine-protein kinase KITCD117 (cluster of differentiation 117) or mast/stem cell growth factor receptor (SCFR).[5] Multiple transcript variants encoding different isoforms have been found for this gene.[6][7] KIT was first described by the German biochemist Axel Ullrich in 1987 as the cellular homolog of the feline sarcoma viral oncogene v-kit.[8]

Function

KIT is a cytokine receptor expressed on the surface of hematopoietic stem cells as well as other cell types. Altered forms of this receptor may be associated with some types of cancer.[9] KIT is a receptor tyrosine kinase type III, which binds to stem cell factor , also known as “steel factor” or “c-kit ligand”. When this receptor binds to stem cell factor (SCF) it forms a dimer that activates its intrinsic tyrosine kinase activity, that in turn phosphorylates and activates signal transduction molecules that propagate the signal in the cell.[10] After activation, the receptor is ubiquitinated to mark it for transport to a lysosome and eventual destruction. Signaling through KIT plays a role in cell survival, proliferation, and differentiation. For instance, KIT signaling is required for melanocyte survival, and it is also involved in haematopoiesis and gametogenesis.[11]

Structure

Like other members of the receptor tyrosine kinase III family, KIT consists of an extracellular domain, a transmembrane domain, a juxtamembrane domain, and an intracellular tyrosine kinase domain. The extracellular domain is composed of five immunoglobulin-like domains, and the protein kinase domain is interrupted by a hydrophilic insert sequence of about 80 amino acids. The ligand stem cell factor binds via the second and third immunoglobulin domains.[12][10][13]

Cell surface marker

Cluster of differentiation (CD) molecules are markers on the cell surface, as recognized by specific sets of antibodies, used to identify the cell type, stage of differentiation and activity of a cell. KIT is an important cell surface marker used to identify certain types of hematopoietic (blood) progenitors in the bone marrow. To be specific, hematopoietic stem cells (HSC), multipotent progenitors (MPP), and common myeloid progenitors (CMP) express high levels of KIT. Common lymphoid progenitors (CLP) express low surface levels of KIT. KIT also identifies the earliest thymocyte progenitors in the thymus—early T lineage progenitors (ETP/DN1) and DN2 thymocytes express high levels of c-Kit. It is also a marker for mouse prostate stem cells.[14] In addition, mast cellsmelanocytes in the skin, and interstitial cells of Cajal in the digestive tract express KIT. In humans, expression of c-kit in helper-like innate lymphoid cells (ILCs) which lack the expression of CRTH2 (CD294) is used to mark the ILC3 population.[15]

CD117/c-KIT is expressed not only by bone marrow-derived stem cells, but also by those found in other adult organs, such as the prostate, liver, and heart, suggesting that SCF/c-KIT signaling pathways may contribute to stemness in some organs. Additionally, c-KIT has been associated with numerous biological processes in other cell types. For example, c-KIT signaling, has been shown to regulate oogenesis, folliculogenesis, and spermatogenesis, playing important roles in female and male fertility.[16]

Mobilization

Hematopoietic progenitor cells are normally present in the blood at low levels. Mobilization is the process by which progenitors are made to migrate from the bone marrow into the bloodstream, thus increasing their numbers in the blood. Mobilization is used clinically as a source of hematopoietic stem cells for hematopoietic stem cell transplantation (HSCT). Signaling through KIT has been implicated in mobilization. At the current time, G-CSF is the main drug used for mobilization; it indirectly activates KIT. Plerixafor (an antagonist of CXCR4SDF1) in combination with G-CSF, is also being used for mobilization of hematopoietic progenitor cells. Direct KIT agonists are currently being developed as mobilization agents.

Role in cancer

Activating mutations in this gene are associated with gastrointestinal stromal tumors, testicular seminoma, mast cell disease, melanomaacute myeloid leukemia, while inactivating mutations are associated with the genetic defect piebaldism.[6]

c-KIT plays an important role in regulating many mechanisms leading to tumor formation and progression of carcinomas. c-KIT has been proposed as a regulator of stemness in several cancers. Its expression has been linked to cancer stemness in ovarian cancer cells, colon cancer cells, non-small cell lung cancer cells, and prostate cancer cells. c-KIT has also been linked to the epithelial-mesenchymal transition (EMT), which is important for tumor aggressiveness and metastatic potential. Ectopic expression of c-KIT and EMT have been linked in denoid cystic carcinoma of the salivary gland, thymic carcinomas, ovarian cancer cells, and prostate cancer cells. Several lines of evidence suggest that SCF/c-KIT signaling plays an important role in the tumor microenvironment. For example, in mice high levels of c-KIT in mast cells as well as its presence in the tumor microenvironment promote angiogenesis, leading to increased tumor growth and metastasis.[16]

Anti-KIT therapies

KIT is a proto-oncogene, meaning that overexpression or mutations of this protein can lead to cancer.[17] Seminomas, a subtype of testicular germ cell tumors, frequently have activating mutations in exon 17 of KIT. In addition, the gene encoding KIT is frequently overexpressed and amplified in this tumor type, most commonly occurring as a single gene amplicon.[18] Mutations of KIT have also been implicated in leukemia, a cancer of hematopoietic progenitors, melanoma, mast cell disease, and gastrointestinal stromal tumors (GISTs). The efficacy of imatinib (trade name Gleevec), a KIT inhibitor, is determined by the mutation status of KIT:

When the mutation has occurred in exon 11 (as is the case many times in GISTs), the tumors are responsive to imatinib. However, if the mutation occurs in exon 17 (as is often the case in seminomas and leukemias), the receptor is not inhibited by imatinib. In those cases other inhibitors such as dasatinib and nilotinib can be used. Researchers investigated the dynamic behavior of wild type and mutant D816H KIT receptor, and emphasized the extended A-loop (EAL) region (805-850) by conducting computational analysis.[19] Their atomic investigation of mutant KIT receptor which emphasized on the EAL region provided a better insight into the understanding of the sunitinib resistance mechanism of the KIT receptor and could help to discover new therapeutics for KIT-based resistant tumor cells in GIST therapy.[19]

The preclinical agent, KTN0182A, is an anti-KIT, pyrrolobenzodiazepine (PBD)-containing antibody-drug conjugate which shows anti-tumor activity in vitro and in vivo against a range of tumor types.[20]

Diagnostic relevance

Antibodies to KIT are widely used in immunohistochemistry to help distinguish particular types of tumour in histological tissue sections. It is used primarily in the diagnosis of GISTs, which are positive for KIT, but negative for markers such as desmin and S-100, which are positive in smooth muscle and neural tumors, which have a similar appearance. In GISTs, KIT staining is typically cytoplasmic, with stronger accentuation along the cell membranes. KIT antibodies can also be used in the diagnosis of mast cell tumours and in distinguishing seminomas from embryonal carcinomas.[21]

Interactions

KIT has been shown to interact with:

See also

References

  1. Jump up to:a b c GRCh38: Ensembl release 89: ENSG00000157404 – Ensembl, May 2017
  2. Jump up to:a b c GRCm38: Ensembl release 89: ENSMUSG00000005672 – Ensembl, May 2017
  3. ^ “Human PubMed Reference:”National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. ^ “Mouse PubMed Reference:”National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. ^ Andre C, Hampe A, Lachaume P, Martin E, Wang XP, Manus V, et al. (January 1997). “Sequence analysis of two genomic regions containing the KIT and the FMS receptor tyrosine kinase genes”. Genomics39 (2): 216–226. doi:10.1006/geno.1996.4482PMID 9027509.
  6. Jump up to:a b “Entrez Gene: KIT v-kit Hardy-Zuckerman 4 feline sarcoma viral oncogene homolog”.
  7. ^ National Cancer Institute Dictionary of Cancer Terms. c-kit. Accessed October 13, 2014.
  8. ^ Yarden Y, Kuang WJ, Yang-Feng T, Coussens L, Munemitsu S, Dull TJ, et al. (November 1987). “Human proto-oncogene c-kit: a new cell surface receptor tyrosine kinase for an unidentified ligand”The EMBO Journal6 (11): 3341–3351. doi:10.1002/j.1460-2075.1987.tb02655.xPMC 553789PMID 2448137.
  9. ^ Edling CE, Hallberg B (2007). “c-Kit–a hematopoietic cell essential receptor tyrosine kinase”. The International Journal of Biochemistry & Cell Biology39 (11): 1995–1998. doi:10.1016/j.biocel.2006.12.005PMID 17350321.
  10. Jump up to:a b Blume-Jensen P, Claesson-Welsh L, Siegbahn A, Zsebo KM, Westermark B, Heldin CH (December 1991). “Activation of the human c-kit product by ligand-induced dimerization mediates circular actin reorganization and chemotaxis”The EMBO Journal10 (13): 4121–4128. doi:10.1002/j.1460-2075.1991.tb04989.xPMC 453162PMID 1721869.
  11. ^ Brooks, Samantha (2006). Studies of genetic variability at the KIT locus and white spotting patterns in the horse (Thesis). University of Kentucky Doctoral Dissertations. pp. 13–16.
  12. ^ Roskoski R (December 2005). “Structure and regulation of Kit protein-tyrosine kinase–the stem cell factor receptor”. Biochemical and Biophysical Research Communications338 (3): 1307–1315. doi:10.1016/j.bbrc.2005.09.150PMID 16226710.
  13. ^ Haase B, Brooks SA, Schlumbaum A, Azor PJ, Bailey E, Alaeddine F, et al. (November 2007). “Allelic heterogeneity at the equine KIT locus in dominant white (W) horses”PLOS Genetics3 (11): e195. doi:10.1371/journal.pgen.0030195PMC 2065884PMID 17997609.
  14. ^ Leong KG, Wang BE, Johnson L, Gao WQ (December 2008). “Generation of a prostate from a single adult stem cell”. Nature456 (7223): 804–808. Bibcode:2008Natur.456..804Ldoi:10.1038/nature07427PMID 18946470S2CID 4410656.
  15. ^ Vallentin B, Barlogis V, Piperoglou C, Cypowyj S, Zucchini N, Chéné M, et al. (October 2015). “Innate Lymphoid Cells in Cancer”Cancer Immunology Research3 (10): 1109–1114. doi:10.1158/2326-6066.CIR-15-0222PMID 26438443.
  16. Jump up to:a b Sheikh E, Tran T, Vranic S, Levy A, Bonfil RD (April 2022). “Role and Significance of c-KIT Receptor Tyrosine Kinase in Cancer: A Review”Bosnian Journal of Basic Medical Sciences22 (5): 683–698. doi:10.17305/bjbms.2021.7399PMC 9519160PMID 35490363.
  17. ^ Jean-Loup Huret. “KIT”. Atlas of Genetics and Cytogenetics in Oncology and Haematology. Retrieved 2008-03-01.
  18. ^ McIntyre A, Summersgill B, Grygalewicz B, Gillis AJ, Stoop J, van Gurp RJ, et al. (September 2005). “Amplification and overexpression of the KIT gene is associated with progression in the seminoma subtype of testicular germ cell tumors of adolescents and adults”Cancer Research65 (18): 8085–8089. doi:10.1158/0008-5472.CAN-05-0471PMID 16166280.
  19. Jump up to:a b Purohit R (2014). “Role of ELA region in auto-activation of mutant KIT receptor: a molecular dynamics simulation insight”Journal of Biomolecular Structure & Dynamics32 (7): 1033–1046. doi:10.1080/07391102.2013.803264PMID 23782055S2CID 5528573.
  20. ^ KTN0182A, an Anti-KIT, Pyrrolobenzodiazepine (PBD)-Containing Antibody Drug Conjugate (ADC) Demonstrates Potent Antitumor Activity In Vitro and In Vivo Against a Broad Range of Tumor Types; Lubeski C, Kemp GC, Von Bulow CL, Howard PW, Hartley JA, Douville T, Wellbrock J, et al.; 11th Annual PEGS – The Essential Protein Engineering Summit, Boston, 2015 Archived October 30, 2015, at the Wayback Machine
  21. ^ Leong AS, Cooper K, Leong FJ (2003). Manual of Diagnostic Cytology (2 ed.). Greenwich Medical Media, Ltd. pp. 149–151. ISBN 978-1-84110-100-2.
  22. ^ Wollberg P, Lennartsson J, Gottfridsson E, Yoshimura A, Rönnstrand L (March 2003). “The adapter protein APS associates with the multifunctional docking sites Tyr-568 and Tyr-936 in c-Kit”The Biochemical Journal370 (Pt 3): 1033–1038. doi:10.1042/BJ20020716PMC 1223215PMID 12444928.
  23. ^ Hallek M, Danhauser-Riedl S, Herbst R, Warmuth M, Winkler A, Kolb HJ, et al. (July 1996). “Interaction of the receptor tyrosine kinase p145c-kit with the p210bcr/abl kinase in myeloid cells”. British Journal of Haematology94 (1): 5–16. doi:10.1046/j.1365-2141.1996.6102053.xPMID 8757502S2CID 30033345.
  24. Jump up to:a b c Anzai N, Lee Y, Youn BS, Fukuda S, Kim YJ, Mantel C, et al. (June 2002). “C-kit associated with the transmembrane 4 superfamily proteins constitutes a functionally distinct subunit in human hematopoietic progenitors”. Blood99 (12): 4413–4421. doi:10.1182/blood.V99.12.4413PMID 12036870.
  25. ^ Lennartsson J, Wernstedt C, Engström U, Hellman U, Rönnstrand L (August 2003). “Identification of Tyr900 in the kinase domain of c-Kit as a Src-dependent phosphorylation site mediating interaction with c-Crk”. Experimental Cell Research288 (1): 110–118. doi:10.1016/S0014-4827(03)00206-4PMID 12878163.
  26. Jump up to:a b van Dijk TB, van Den Akker E, Amelsvoort MP, Mano H, Löwenberg B, von Lindern M (November 2000). “Stem cell factor induces phosphatidylinositol 3′-kinase-dependent Lyn/Tec/Dok-1 complex formation in hematopoietic cells”Blood96 (10): 3406–3413. doi:10.1182/blood.V96.10.3406PMID 11071635.
  27. ^ Sattler M, Salgia R, Shrikhande G, Verma S, Pisick E, Prasad KV, Griffin JD (April 1997). “Steel factor induces tyrosine phosphorylation of CRKL and binding of CRKL to a complex containing c-kit, phosphatidylinositol 3-kinase, and p120(CBL)”The Journal of Biological Chemistry272 (15): 10248–10253. doi:10.1074/jbc.272.15.10248PMID 9092574.
  28. Jump up to:a b Liang X, Wisniewski D, Strife A, Clarkson B, Resh MD (April 2002). “Phosphatidylinositol 3-kinase and Src family kinases are required for phosphorylation and membrane recruitment of Dok-1 in c-Kit signaling”The Journal of Biological Chemistry277 (16): 13732–13738. doi:10.1074/jbc.M200277200PMID 11825908.
  29. ^ Voisset E, Lopez S, Chaix A, Vita M, George C, Dubreuil P, De Sepulveda P (February 2010). “FES kinase participates in KIT-ligand induced chemotaxis”. Biochemical and Biophysical Research Communications393 (1): 174–178. doi:10.1016/j.bbrc.2010.01.116PMID 20117079.
  30. ^ Jahn T, Seipel P, Urschel S, Peschel C, Duyster J (February 2002). “Role for the adaptor protein Grb10 in the activation of Akt”Molecular and Cellular Biology22 (4): 979–991. doi:10.1128/MCB.22.4.979-991.2002PMC 134632PMID 11809791.
  31. Jump up to:a b c De Sepulveda P, Okkenhaug K, Rose JL, Hawley RG, Dubreuil P, Rottapel R (February 1999). “Socs1 binds to multiple signalling proteins and suppresses steel factor-dependent proliferation”The EMBO Journal18 (4): 904–915. doi:10.1093/emboj/18.4.904PMC 1171183PMID 10022833.
  32. ^ Thömmes K, Lennartsson J, Carlberg M, Rönnstrand L (July 1999). “Identification of Tyr-703 and Tyr-936 as the primary association sites for Grb2 and Grb7 in the c-Kit/stem cell factor receptor”The Biochemical Journal341 (1): 211–216. doi:10.1042/0264-6021:3410211PMC 1220349PMID 10377264.
  33. ^ Feng GS, Ouyang YB, Hu DP, Shi ZQ, Gentz R, Ni J (May 1996). “Grap is a novel SH3-SH2-SH3 adaptor protein that couples tyrosine kinases to the Ras pathway”The Journal of Biological Chemistry271 (21): 12129–12132. doi:10.1074/jbc.271.21.12129PMID 8647802.
  34. ^ Lev S, Yarden Y, Givol D (May 1992). “A recombinant ectodomain of the receptor for the stem cell factor (SCF) retains ligand-induced receptor dimerization and antagonizes SCF-stimulated cellular responses”The Journal of Biological Chemistry267 (15): 10866–10873. doi:10.1016/S0021-9258(19)50098-9PMID 1375232.
  35. ^ Blechman JM, Lev S, Brizzi MF, Leitner O, Pegoraro L, Givol D, Yarden Y (February 1993). “Soluble c-kit proteins and antireceptor monoclonal antibodies confine the binding site of the stem cell factor”The Journal of Biological Chemistry268 (6): 4399–4406. doi:10.1016/S0021-9258(18)53623-1PMID 7680037.
  36. ^ Gueller S, Gery S, Nowak V, Liu L, Serve H, Koeffler HP (October 2008). “Adaptor protein Lnk associates with Tyr(568) in c-Kit”. The Biochemical Journal415 (2): 241–245. doi:10.1042/BJ20080102PMID 18588518S2CID 39310714.
  37. ^ Linnekin D, DeBerry CS, Mou S (October 1997). “Lyn associates with the juxtamembrane region of c-Kit and is activated by stem cell factor in hematopoietic cell lines and normal progenitor cells”The Journal of Biological Chemistry272 (43): 27450–27455. doi:10.1074/jbc.272.43.27450PMID 9341198.
  38. ^ Jhun BH, Rivnay B, Price D, Avraham H (April 1995). “The MATK tyrosine kinase interacts in a specific and SH2-dependent manner with c-Kit”The Journal of Biological Chemistry270 (16): 9661–9666. doi:10.1074/jbc.270.16.9661PMID 7536744.
  39. ^ Price DJ, Rivnay B, Fu Y, Jiang S, Avraham S, Avraham H (February 1997). “Direct association of Csk homologous kinase (CHK) with the diphosphorylated site Tyr568/570 of the activated c-KIT in megakaryocytes”The Journal of Biological Chemistry272 (9): 5915–5920. doi:10.1074/jbc.272.9.5915PMID 9038210.
  40. ^ Mancini A, Koch A, Stefan M, Niemann H, Tamura T (September 2000). “The direct association of the multiple PDZ domain containing proteins (MUPP-1) with the human c-Kit C-terminus is regulated by tyrosine kinase activity”. FEBS Letters482 (1–2): 54–58. doi:10.1016/S0014-5793(00)02036-6PMID 11018522S2CID 40159587.
  41. ^ Serve H, Hsu YC, Besmer P (February 1994). “Tyrosine residue 719 of the c-kit receptor is essential for binding of the P85 subunit of phosphatidylinositol (PI) 3-kinase and for c-kit-associated PI 3-kinase activity in COS-1 cells”The Journal of Biological Chemistry269 (8): 6026–6030. doi:10.1016/S0021-9258(17)37564-6PMID 7509796.
  42. ^ Tauchi T, Feng GS, Marshall MS, Shen R, Mantel C, Pawson T, Broxmeyer HE (October 1994). “The ubiquitously expressed Syp phosphatase interacts with c-kit and Grb2 in hematopoietic cells”The Journal of Biological Chemistry269 (40): 25206–25211. doi:10.1016/S0021-9258(17)31518-1PMID 7523381.
  43. Jump up to:a b Kozlowski M, Larose L, Lee F, Le DM, Rottapel R, Siminovitch KA (April 1998). “SHP-1 binds and negatively modulates the c-Kit receptor by interaction with tyrosine 569 in the c-Kit juxtamembrane domain”Molecular and Cellular Biology18 (4): 2089–2099. doi:10.1128/MCB.18.4.2089PMC 121439PMID 9528781.
  44. ^ Yi T, Ihle JN (June 1993). “Association of hematopoietic cell phosphatase with c-Kit after stimulation with c-Kit ligand”Molecular and Cellular Biology13 (6): 3350–3358. doi:10.1128/MCB.13.6.3350PMC 359793PMID 7684496.
  45. ^ Deberry C, Mou S, Linnekin D (October 1997). “Stat1 associates with c-kit and is activated in response to stem cell factor”The Biochemical Journal327 (1): 73–80. doi:10.1042/bj3270073PMC 1218765PMID 9355737.
  46. ^ Bayle J, Letard S, Frank R, Dubreuil P, De Sepulveda P (March 2004). “Suppressor of cytokine signaling 6 associates with KIT and regulates KIT receptor signaling”The Journal of Biological Chemistry279 (13): 12249–12259. doi:10.1074/jbc.M313381200PMID 14707129.
  47. ^ Lennartsson J, Blume-Jensen P, Hermanson M, Pontén E, Carlberg M, Rönnstrand L (September 1999). “Phosphorylation of Shc by Src family kinases is necessary for stem cell factor receptor/c-kit mediated activation of the Ras/MAP kinase pathway and c-fos induction”Oncogene18 (40): 5546–5553. doi:10.1038/sj.onc.1202929PMID 10523831.
  48. ^ Tang B, Mano H, Yi T, Ihle JN (December 1994). “Tec kinase associates with c-kit and is tyrosine phosphorylated and activated following stem cell factor binding”Molecular and Cellular Biology14 (12): 8432–8437. doi:10.1128/MCB.14.12.8432PMC 359382PMID 7526158.

Further reading

External links[edit]

Leave a Reply

Your email address will not be published. Required fields are marked *

This site uses Akismet to reduce spam. Learn how your comment data is processed.