Production of Carminic Acid by Metabolically Engineered Escherichia coli
Production of Carminic Acid by Metabolically Engineered Escherichia coli
Dongsoo Yang, Woo Dae Jang, and Sang Yup Lee Journal of the American Chemical Society 2021 143 (14), 5364-5377 DOI: 10.1021/jacs.0c12406
Abstract: Carminic acid is an aromatic polyketide found in scale insects (i.e., Dactylopius coccus) and is a widely used natural red colorant. It has long been produced by the cumbersome farming of insects followed by multistep purification processes. Thus, there has been much interest in producing carminic acid by the fermentation of engineered bacteria. Here we report the complete biosynthesis of carminic acid from glucose in engineered Escherichia coli. We first optimized the type II polyketide synthase machinery from Photorhabdus luminescens, enabling a high-level production of flavokermesic acid upon coexpression of the cyclases ZhuI and ZhuJ from Streptomyces sp. R1128. To discover the enzymes responsible for the remaining two reactions (hydroxylation and C-glucosylation), biochemical reaction analyses were performed by testing enzyme candidates reported to perform similar reactions. The two identified enzymes, aklavinone 12-hydroxylase (DnrF) from Streptomyces peucetius and C-glucosyltransferase (GtCGT) from Gentiana triflora, could successfully perform hydroxylation and C-glucosylation of flavokermesic acid, respectively. Then, homology modeling and docking simulations were performed to enhance the activities of these two enzymes, leading to the generation of beneficial mutants with 2–5-fold enhanced conversion efficiencies. In addition, the GtCGT mutant was found to be a generally applicable C-glucosyltransferase in E. coli, as was showcased by the successful production of aloesin found in Aloe vera. Simple metabolic engineering followed by fed-batch fermentation resulted in 0.63 ± 0.02 mg/L of carminic acid production from glucose. The strategies described here will be useful for the design and construction of biosynthetic pathways involving unknown enzymes and consequently the production of diverse industrially important natural products.
References
References
(1) Liu, X.; Hua, K.; Liu, D.; Wu, Z. L.; Wang, Y.; Zhang, H.; Deng, Z.; Pfeifer, B. A.; Jiang, M., Heterologous biosynthesis of type II polyketide products using E. coli. ACS Chem. Biol. 2020,15 (5), 1177-1183.
(2) Pfeifer, B. A.; Admiraal, S. J.; Gramajo, H.; Cane, D. E.; Khosla, C., Biosynthesis of complex polyketides in a metabolically engineered strain of E. coli. Science 2001,291(5509), 1790-1792.
(3) Yang, D.; Kim, W. J.; Yoo, S. M.; Choi, J. H.; Ha, S. H.; Lee, M. H.; Lee, S. Y., Repurposing type III polyketide synthase as a malonyl-CoA biosensor for metabolic engineering in bacteria. Proc. Natl. Acad. Sci. U. S. A. 2018,115 (40), 9835-9844.
(4) Kharel, M. K.; Pahari, P.; Lian, H.; Rohr, J., Enzymatic total synthesis of rabelomycin, an angucycline group antibiotic. Org. Lett. 2010,12 (12), 2814-2817.
(5) Kim, J. H.; Komatsu, M.; Shin-Ya, K.; Omura, S.; Ikeda, H., Distribution and functional analysis of the phosphopantetheinyl transferase superfamily in Actinomycetales microorganisms. Proc. Natl. Acad. Sci. U. S. A. 2018,115 (26), 6828-6833.
(6) Cummings, M.; Peters, A. D.; Whitehead, G. F. S.; Menon, B. R. K.; Micklefield, J.; Webb, S. J.; Takano, E., Assembling a plug-and-play production line for combinatorial biosynthesis of aromatic polyketides in Escherichia coli. PLoS Biol. 2019,17
(7), e3000347. (7) Bräuer, A.; Zhou, Q.; Grammbitter, G. L. C.; Schmalhofer, M.; Rühl, M.; Kaila, V. R. I.; Bode, H. B.; Groll, M., Structural snapshots of the minimal PKS system responsible for octaketide biosynthesis. Nat. Chem. 2020,12
(8), 755-763. (8) Frandsen, R. J. N.; Khorsand-Jamal, P.; Kongstad, K. T.; Nafisi, M.; Kannangara, R. M.; Staerk, D.; Okkels, F. T.; Binderup, K.; Madsen, B.; Møller, B. L.; Thrane, U.; Mortensen, U. H., Heterologous production of the widely used natural food colorant carminic acid in Aspergillus nidulans. Sci. Rep. 2018,8 (1), 12853.
(9) Andersen-Ranberg, J.; Kongstad, K. T.; Nafisi, M.; Staerk, D.; Okkels, F. T.; Mortensen, U. H.; Møller, B. L.; Frandsen, R. J. N.; Kannangara, R., Synthesis of C-glucosylated octaketide anthraquinones in Nicotiana benthamiana by using a multispecies-based biosynthetic pathway. ChemBioChem 2017,18 (19), 1893-1897.
(10) Ames, B. D.; Lee, M. Y.; Moody, C.; Zhang, W.; Tang, Y.; Tsai, S. C., Structural and biochemical characterization of ZhuI aromatase/cyclase from the R1128 polyketide pathway. Biochemistry 2011,50 (39), 8392-8406.
(11) Zaya, P. L., B.; Oehlschlager, A. C., Carmine extraction technology. International Development Research Centre (IDRC) Digital Library 1999 (Accessed online February 9 2021), https://idl-bnc-idrc.dspacedirect.org/handle/10625/21568.
(12) Choi, K. R.; Jang, W. D.; Yang, D.; Cho, J. S.; Park, D.; Lee, S. Y., Systems metabolic engineering strategies: Integrating systems and synthetic biology with metabolic engineering. Trends Biotechnol. 2019,37 (8), 817-837.
(13) Kovach, M. E.; Phillips, R. W.; Elzer, P. H.; Roop, R. M., II; Peterson, K. M., pBBR1MCS: a broad-host-range cloning vector. Biotechniques 1994,16 (5), 800-802.
(14) Park, S. Y.; Yang, D.; Ha, S. H.; Lee, S. Y., Biosynthesis of dihydroquercetin in Escherichia colifrom glycerol. 2020-11-27. bioRxivhttps://doi.org/10.1101/2020.11.27.401000 (accessed 2021-03-24).
(15) Na, D.; Yoo, S. M.; Chung, H.; Park, H.; Park, J. H.; Lee, S. Y., Metabolic engineering of Escherichia coli using synthetic small regulatory RNAs. Nat. Biotechnol. 2013,31(2), 170-174.
(16) Kannangara, R.; Siukstaite, L.; Borch-Jensen, J.; Madsen, B.; Kongstad, K. T.; Staerk, D.; Bennedsen, M.; Okkels, F. T.; Rasmussen, S. A.; Larsen, T. O.; Frandsen, R. J. N.; Møller, B. L., Characterization of a membrane-bound C-glucosyltransferase responsible for carminic acid biosynthesis in Dactylopius coccus Costa. Nat. Commun. 2017,8, 1987.
(17) Hussein, H. A.; Borrel, A.; Geneix, C.; Petitjean, M.; Regad, L.; Camproux, A. C., PockDrug-Server: a new web server for predicting pocket druggability on holo and apo proteins. Nucleic Acids Res. 2015,43 (W1), W436-442.
(18) Djoumbou-Feunang, Y.; Pon, A.; Karu, N.; Zheng, J.; Li, C.; Arndt, D.; Gautam, M.; Allen, F.; Wishart, D. S., CFM-ID 3.0: Significantly improved ESI-MS/MS prediction and compound identification. Metabolites 2019,9 (4), 72.
(19) Putkaradze, N.; Teze, D.; Fredslund, F.; Welner, D. H., Natural product C-glycosyltransferases – a scarcely characterised enzymatic activity with biotechnological potential. Nat. Prod. Rep. 2020, 10.1039/d0np00040j.
(20) Choi, S. Y.; Park, S. J.; Kim, W. J.; Yang, J. E.; Lee, H.; Shin, J.; Lee, S. Y., One-step fermentative production of poly(lactate-co-glycolate) from carbohydrates in Escherichia coli. Nat. Biotechnol. 2016,34 (4), 435-440.
(21) Gibson, D. G.; Young, L.; Chuang, R. Y.; Venter, J. C.; Hutchison, C. A.; Smith, H. O., Enzymatic assembly of DNA molecules up to several hundred kilobases. Nat. Methods 2009,6 (5), 343-345.
(22) Zheng, L.; Baumann, U.; Reymond, J. L., An efficient one-step site-directed and site-saturation mutagenesis protocol. Nucleic Acids Res. 2004,32 (14), e115.
(23) Webb, B.; Sali, A., Comparative protein structure modeling using MODELLER. Curr. Protoc. Bioinf. 2016,54, 5.6.1-5.6.37.
(24) Lindqvist, Y.; Koskiniemi, H.; Jansson, A.; Sandalova, T.; Schnell, R.; Liu, Z.; Mantsala, P.; Niemi, J.; Schneider, G., Structural basis for substrate recognition and specificity in aklavinone-11-hydroxylase from rhodomycin biosynthesis. J. Mol. Biol. 2009,393(4), 966-977.
(25) Chaudhury, S.; Lyskov, S.; Gray, J. J., PyRosetta: a script-based interface for implementing molecular modeling algorithms using Rosetta. Bioinformatics 2010,26(5), 689-691.
(26) He, J. B.; Zhao, P.; Hu, Z. M.; Liu, S.; Kuang, Y.; Zhang, M.; Li, B.; Yun, C. H.; Qiao, X.; Ye, M., Molecular and structural characterization of a promiscuous C-glycosyltransferase from Trollius chinensis. Angew. Chem., Int. Ed. 2019,58 (33), 11513-11520.
(27) Sohn, J. S. J., Y.; Han, J. S.; Hwang, G. -S., Identification of Xanthium sibiricumcomponents using LC-SPE-NMR-MS hyphenated system. J. Kor. Magn. Reson. Soc. 2018,22, 26-33.
(28) Choi, K. R.; Ryu, J. Y.; Lee, S. Y., Revisiting statistical design and analysis in scientific research. Small 2018,14(40), e1802604.
Leave a Reply