k

Interactions between Paracetamol and Formaldehyde: Theoretical Investigation and Topological Analysis (Abstract and References)

In this work, noncovalent interactions including hydrogen bonds, C···C, N···O, and van der Waals forces between paracetamol and formaldehyde were investigated using the second-order perturbation theory MP2 in conjunction with the correlation consistent basis sets (aug-cc-pVDZ and aug-cc-pVTZ). Two molecular conformations of paracetamol were considered. Seven equilibrium geometries of dimers were found from the result of the interactions with formaldehyde for each conformation of paracetamol. Interaction energies of complexes with both ZPE and BSSE corrections range from −7.0 to −21.7 kJ mol–1. Topological parameters (such as electron density, its Laplacian, and local electron energy density at the bond critical points) of the bonds from atoms in molecules theory were analyzed in detail. The natural bond orbital analysis showed that the stability of complexes was controlled by noncovalent interactions including O–H···O, N–H···O, C–H···O, C–H···N, C–H···H–C, C···C, and N···O. The red- and blue-shifted hydrogen bonds could both be observed in these complexes. The properties of these interactions were also further examined in water using a polarized continuum model. In water, the stability of the complex was slightly reduced as compared to that in the gas phase.


Tho Huu Nguyen, Tri Huu Nguyen, Thi Thanh Thuy Le, Hoang Vu Dang, and Hue Minh Thi Nguyen, Interactions between Paracetamol and Formaldehyde: Theoretical Investigation and Topological Analysis. ACS Omega 2023, Publication Date: March 22, 2023 https://doi.org/10.1021/acsomega.2c0502

This article references 52 other publications.

  1. Riley, K. E.; Hobza, P. Noncovalent interactions in biochemistry. Wiley Interdiscip. Rev.: Comput. Mol. Sci. 20111, 3– 17,  DOI: 10.1002/wcms.8 [Crossref], [CAS], Google Scholar
  2. Yamauchi, O. Noncovalent interactions in biocomplexes. Phys. Sci. Rev. 20161, 20160001,  DOI: 10.1515/psr-2016-0001 [Crossref], Google Scholar
  3. Roblin, R. O. Confirmation of the structures of aureomycin and terramycin was one of the year’s high lights in medicinal chemistryChem. Eng. News 195331, 48– 49,  DOI: 10.1021/cen-v031n001.p048 [ACS Full Text ], [CAS], Google Scholar
  4. Yunta, M. J. R. It is important to compute intramolecular hydrogen bonding in drug design?. Am. J. Model. Optim. 20175, 24– 57,  DOI: 10.12691/ajmo-5-1-3 [Crossref], Google Scholar
  5. Shankar, K.; Mehendale, H. M. Acetaminophen. In Encyclopedia of Toxicology, 3rd ed.; Wexler, P., Ed.; Academic Press: New York, 2014; pp 26– 29.[Crossref], Google Scholar
  6. Sehrawat, R.; Tyagi, D. K.; Mittal, R.; Pandey, S. P.; Singh, O. P.; Sharma, A. K. DFT vibrational frequencies studies of acetyl-salicylic acid and Paracetamol. Mater. Today: Proc. 202249, 3151– 3154,  DOI: 10.1016/j.matpr.2020.11.158 [Crossref], [CAS], Google Scholar
  7. Jozwiak-Bebenista, M.; Nowak, J. Z. Paracetamol: Mechanism of action, applications and safety concern. Acta Pol. Pharm. 201471, 11– 23[PubMed], [CAS], Google ScholarPMID: 24779190
  8. Ghasempour, H.; Dehestani, M.; Hosseini, S. M. A. Theoretical studies of the paracetamol and phenacetin adsorption on single-wall boron-nitride nanotubes: a DFT and MD investigation. Struct. Chem. 202031, 1403– 1417,  DOI: 10.1007/s11224-020-01499-8 [Crossref], [CAS], Google Scholar
  9. Hoang, V. D.; Ly, D. T. H.; Tho, N. H.; Minh, T. N. H. UV spectrophotometric simultaneous determination of paracetamol and ibuprofen in combined tablets by derivative and wavelet transforms. Sci. World J. 20142014, 313609,  DOI: 10.1155/2014/313609 [Crossref], Google Scholar
  10. Srivastava, K.; Shimpi, M. R.; Srivastava, A.; Tandon, P.; Sinha, K.; Velaga, S. P. Vibrational analysis and chemical activity of paracetamol-oxalic acid cocrystal based on monomer and dimer calculations: DFT and AIM approach. RSC Adv. 20166, 10024– 10037,  DOI: 10.1039/C5RA24402A [Crossref], [CAS], Google Scholar
  11. Misra, A. K.; Misra, M.; Panpalia, G. M.; Dorle, A. K. Interaction study of paracetamol with saturated (capric) and unsaturated (oleic) fatty acids. Pharm. Dev. Tech. 200712, 423– 428,  DOI: 10.1080/10837450701366895 [Crossref], [PubMed], [CAS], Google Scholar
  12. Zhai, F. P.; Wei, H. E.; Liu, Y.; Hu, F. Y. Theoretical explanation for the pharmaceutical incompatibility through the cooperativity effect of the drug–drug intermolecular interactions in the phenobarbital···paracetamol···H2O complex. J. Mol. Model. 201925, 181,  DOI: 10.1007/s00894-019-4060-1 [Crossref], [PubMed], [CAS], Google Scholar
  13. Xu, M.; Zhang, B.; Wang, Q.; Yuan, Y.; Sun, L.; Huang, Z. Theoretical study on the hydrogen bonding interactions in paracetamol-water complexes. J. Chil. Chem. Soc. 201863, 3788– 3794,  DOI: 10.4067/s0717-97072018000103788 [Crossref], [CAS], Google Scholar
  14. Dehestani, M.; Pourestarabadi, S. A density functional theory and quantum theory of atoms in molecules study on hydrogen bonding interaction between paracetamol and water molecules. Russ. J. Phys. Chem. B 201610, 890– 896,  DOI: 10.1134/S1990793116060191 [Crossref], [CAS], Google Scholar
  15. Danten, Y.; Tassaing, T.; Besnard, M. Density Functional Theory (DFT) calculations of the infrared absorption spectra of acetaminophen complexes formed with ethanol and acetone species. J. Phys. Chem. A 2006110, 8986– 9001,  DOI: 10.1021/jp061845l [ACS Full Text ], [CAS], Google Scholar
  16. Leyk, E.; Wesolowski, M. Interactions between paracetamol and hypromellose in the solid state. Front. Pharmacol. 201910, 1– 11,  DOI: 10.3389/fphar.2019.00014 [Crossref], [PubMed], Google Scholar
  17. Srivastava, K.; Khan, E.; Shimpi, M. R.; Tandon, P.; Sinha, K.; Velaga, S. P. Molecular structure and hydrogen bond interactions of a paracetamol-4,4′-bipyridine cocrystal studied using a vibrational spectroscopic and quantum chemical approach. CrystEngComm 201820, 213– 222,  DOI: 10.1039/c7ce01505d [Crossref], [CAS], Google Scholar
  18. An, G. W.; Zhang, H.; Cheng, X. L.; Zhuo, Q. L.; Lv, Y. C. Electronic structure and hydrogen bond in the crystal of paracetamol drugs. Struct. Chem. 200819, 613– 617,  DOI: 10.1007/s11224-008-9333-8 [Crossref], [CAS], Google Scholar
  19. Kolesov, B. A.; Mikhailenko, M. A.; Boldyreva, E. V. Dynamics of the intermolecular hydrogen bonds in the polymorphs of paracetamol in relation to crystal packing and conformational transitions: A variable-temperature polarized Raman spectroscopy study. Phys. Chem. Chem. Phys. 201113, 14243– 14253,  DOI: 10.1039/c1cp20139e [Crossref], [PubMed], [CAS], Google Scholar
  20. Sala, S.; Danten, Y.; Ventosa, N.; Tassaing, T.; Besnard, M.; Veciana, J. Solute–solvent interactions governing preferential solvation phenomena of acetaminophen in CO2-expanded organic solutions: A spectroscopic and theoretical study. J. Supercrit. Fluids 200638, 295– 305,  DOI: 10.1016/j.supflu.2005.11.006 [Crossref], [CAS], Google Scholar
  21. Sala, S.; Tassaing, T.; Ventosa, N.; Danten, Y.; Besnard, M.; Veciana, J. Molecular insight, through IR Spectroscopy, on solvating phenomena occurring in CO2-expanded solutions. ChemPhysChem 20045, 243– 245,  DOI: 10.1002/cphc.200300921 [Crossref], [PubMed], [CAS], Google Scholar
  22. Du, L.; Mackeprang, K.; Kjaergaard, H. G. Fundamental and overtone vibrational spectroscopy, enthalpy of hydrogen bond formation and equilibrium constant determination of the methanol–dimethylamine complex. Phys. Chem. Chem. Phys. 201315, 10194– 10206,  DOI: 10.1039/C3CP50243K [Crossref], [PubMed], [CAS], Google Scholar
  23. Nassar, M. N.; Nesarikar, V. N.; Lozano, R.; Parker, W. L.; Huang, Y.; Palaniswamy, V.; Xu, W.; Khaselev, N. Influence of formaldehyde impurity in polysorbate 80 and PEG-300 on the stability of a parenteral formulation of BMS-204352: identification and control of the degradation product. Pharm. Dev. Technol. 20049, 189– 195,  DOI: 10.1081/pdt-120030249 [Crossref], [PubMed], [CAS], Google Scholar
  24. Wang, G.; Fiske, J. D.; Jennings, S. P.; Tomasella, F. P.; Palaniswamy, V. A.; Ray, K. L. Identification and control of a degradation product in Avapro film-coated tablet: low dose formulation. Pharm. Dev. Technol. 200813, 393– 399,  DOI: 10.1080/10837450802244918 [Crossref], [PubMed], [CAS], Google Scholar
  25. Gannett, P. M.; Hailu, S.; Daft, J.; James, D.; Rybeck, B.; Tracy, T. S. In vitro reaction of formaldehyde with fenfluramine: conversion to N-methyl fenfluramine. J. Anal. Toxicol. 200125, 88– 92,  DOI: 10.1093/jat/25.2.88 [Crossref], [PubMed], [CAS], Google Scholar
  26. Desai, D. S.; Rubitski, B. A.; Bergum, J. S.; Varia, S. A. Effects of different types of lactose and disintegrant on dissolution stability of hydrochlorothiazide capsule formulations. Int. J. Pharm. 1994110, 257– 265,  DOI: 10.1016/0378-5173(94)90248-8 [Crossref], [CAS], Google Scholar
  27. Pápai, I.; Jancsó, G. Hydrogen bonding in methyl-substituted pyridine–water complexes: A theoretical study. J. Phys. Chem. A 2000104, 2132– 2137,  DOI: 10.1021/jp994094e [ACS Full Text ], [CAS], Google Scholar
  28. de Carvalho, M. F.; Mosquera, R. A.; Rivelino, R. A density functional theory study of the hydrogen bond interactions in glycine dimers. Chem. Phys. Lett. 2007445, 117– 124,  DOI: 10.1016/j.cplett.2007.07.077 [Crossref], [CAS], Google Scholar
  29. Rodrigues-Oliveira, A. F.; Ribeiro, F. W. M.; Cervi, G.; Correra, T. C. Evaluation of common theoretical methods for predicting infrared multiphotonic dissociation vibrational spectra of intramolecular hydrogen-bonded ions. ACS Omega 20183, 9075– 9085,  DOI: 10.1021/acsomega.8b00815 [ACS Full Text ], [CAS], Google Scholar
  30. Chopra, N.; Kaur, D.; Chopra, G. Nature and hierarchy of hydrogen-bonding interactions in binary complexes of azoles with water and hydrogen peroxide. ACS Omega 20183, 12688– 12702,  DOI: 10.1021/acsomega.8b01523 [ACS Full Text ], [CAS], Google Scholar
  31. Boys, S. F.; Bernardi, F. The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors. Mol. Phys. 197019, 553– 566,  DOI: 10.1080/00268977000101561 [Crossref], [CAS], Google Scholar
  32. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Petersson, G. A.; Nakatsuji, H.; Li, X.; Caricato, M.; Marenich, A.; Bloino, J.; Janesko, B. G.; Gomperts, R.; Mennucci, B.; Hratchian, H. P.; Ortiz, J. V.; Izmaylov, A. F.; Sonnenberg, J. L.; Williams-Young, D.; Ding, F.; Lipparini, F.; Egidi, F.; Goings, J.; Peng, B.; Petrone, A.; Henderson, T.; Ranasinghe, D.; Zakrzewski, V. G.; Gao, J.; Rega, N.; Zheng, G.; Liang, W.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Throssell, K.; Montgomery, J. A., Jr., Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Keith, T.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Millam, J. M.; Klene, M.; Adamo, C.; Cammi, R.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Farkas, O.; Foresman, J. B.; Fox, D. J. Gaussian 09 Revision C.01; Gaussian Inc.: Wallingford CT, 2010.Google Scholar
  33. Lu, T.; Chen, F. Multiwfn: A multifunctional wavefunction analyzer. J. Comput. Chem. 201233, 580– 592,  DOI: 10.1002/jcc.22885 [Crossref], [PubMed], [CAS], Google Scholar
  34. Espinosa, E.; Molins, E.; Lecomte, C. Hydrogen bond strengths revealed by topological analyses of experimentally observed electron densities. Chem. Phys. Lett. 1998285, 170– 173,  DOI: 10.1016/S0009-2614(98)00036-0 [Crossref], [CAS], Google Scholar
  35. Cossi, M.; Barone, V.; Mennucci, B.; Tomasi, J. Ab initio study of ionic solutions by a polarizable continuum dielectric model. Chem. Phys. Lett. 1998286, 253– 260,  DOI: 10.1016/S0009-2614(98)00106-7 [Crossref], [CAS], Google Scholar
  36. Tomasi, J.; Mennucci, B.; Cancès, E. The IEF version of the PCM solvation method: an overview of a new method addressed to study molecular solutes at the QM ab initio level. J. Mol. Struct. THEOCHEM 1999464, 211– 226,  DOI: 10.1016/S0166-1280(98)00553-3 [Crossref], [CAS], Google Scholar
  37. Klamt, A.; Moya, C.; Palomar, J. A comprehensive comparison of the IEFPCM and SS(V)PE continuum solvation methods with the COSMO approach. J. Chem. Theory and Comput. 201511, 4220– 4225,  DOI: 10.1021/acs.jctc.5b00601 [ACS Full Text ], [CAS], Google Scholar
  38. Mennucci, B. Hydrogen bond versus polar effects: An ab initio analysis on n → π* absorption spectra and n nuclear shieldings of diazines in solution. J. Am. Chem. Soc. 2002124, 1506– 1515,  DOI: 10.1021/ja0118542 [ACS Full Text ], [CAS], Google Scholar
  39. Haisa, M.; Kashino, S.; Kawai, R.; Maeda, H. The monoclinic form of {\it p}-hydroxyacetanilide. Acta. Crystallogr. B: Struct. Sci. Cryst. Eng. Mater. 197632, 1283– 1285,  DOI: 10.1107/S0567740876012223 [Crossref], Google Scholar
  40. Druzhbin, D. A.; Drebushchak, T. N.; Min’kov, V. S.; Boldyreva, E. V. Crystal structure of two paracetamol polymorphs at 20 K: A search for the ‘structure-property’ relationship. J. Struct. Chem. 201556, 317– 323,  DOI: 10.1134/S002247661502016X [Crossref], [CAS], Google Scholar
  41. Du, J. J.; Lai, F.; Váradi, L.; Williams, P. A.; Groundwater, P. W.; Platts, J. A.; Hibbs, D. E.; Overgaard, J. Monoclinic paracetamol vs. paracetamol-4,4′-bipyridine co-crystal; what is the difference? a charge density study. Crystals 20188, 46,  DOI: 10.3390/cryst8010046 [Crossref], Google Scholar
  42. Haisa, M.; Kashino, S.; Maeda, H. The orthorhombic form of p-hydroxyacetanilide. Acta. Crystallogr. B: Struct. Sci. Cryst. Eng. Mater. 197430, 2510– 2512,  DOI: 10.1107/S0567740874007473 [Crossref], [CAS], Google Scholar
  43. “Van Der Waals Radius of the elements” Mathematica’s ElementData function from Wolfram Research, Inc. https://periodictable.com/Properties/A/VanDerWaalsRadius.an.html (accessed Oct 29, 2021).Google Scholar
  44. Steiner, T. The hydrogen bond in the solid state. Angew. Chem., Int. Ed. 200241, 48– 76,  DOI: 10.1002/1521-3773(20020104)41:1<48::AID-ANIE48>3.0.CO;2-U [Crossref], [CAS], Google Scholar
  45. Popelier, P. Atoms in Molecules: An Introduction, 1st ed.; Prentice Hall, 2000.[Crossref], Google Scholar
  46. Bader, R. F. W. A quantum theory of molecular structure and its applications. Chem. Rev. 199191, 893– 928,  DOI: 10.1021/cr00005a013 [ACS Full Text ], [CAS], Google Scholar
  47. Mallinson, P. R.; Woźniak, K.; Smith, G. T.; McCormack, K. L. A charge density analysis of cationic and anionic hydrogen bonds in a ‘proton sponge’ complex. J. Am. Chem. Soc. 1997119, 11502– 11509,  DOI: 10.1021/ja971940v [ACS Full Text ], [CAS], Google Scholar
  48. Johnson, E. R.; Keinan, S.; Mori-Sánchez, P.; Contreras-García, J.; Cohen, A. J.; Yang, W. Revealing noncovalent interactions. J. Am. Chem. Soc. 2010132, 6498– 6506,  DOI: 10.1021/ja100936w [ACS Full Text ], [CAS], Google Scholar
  49. Saleh, G.; Gatti, C.; Presti, L. L.; Contreras-García, J. Revealing non-covalent interactions in molecular crystals through their experimental electron densities. Chemistry 201218, 15523– 15536,  DOI: 10.1002/chem.201201290 [Crossref], [PubMed], [CAS], Google Scholar
  50. Humphrey, W.; Dalke, A.; Schulten, K. VMD: Visual molecular dynamics. J. Mol. Graph. 199614, 33– 38,  DOI: 10.1016/0263-7855(96)00018-5 [Crossref], [PubMed], [CAS], Google Scholar
  51. Alabugin, I. V.; Manoharan, M.; Peabody, S.; Weinhold, F. Electronic basis of improper hydrogen bonding: A subtle balance of hyperconjugation and rehybridization. J. Am. Chem. Soc. 2003125, 5973– 5987,  DOI: 10.1021/ja034656e [ACS Full Text ], [CAS], Google Scholar
  52. Aquino, A. J. A.; Tunega, D.; Haberhauer, G.; Gerzabek, M. H.; Lischka, H. Solvent effects on hydrogen bondsa theoretical study. J. Phys. Chem. A 2002106, 1862– 1871,  DOI: 10.1021/jp013677x [ACS Full Text ], [CAS], Google Scholar

Post a Comment

Your email address will not be published. Required fields are marked *