“
Interactions between Paracetamol and Formaldehyde: Theoretical Investigation and Topological Analysis (Abstract and References)
In this work, noncovalent interactions including hydrogen bonds, C···C, N···O, and van der Waals forces between paracetamol and formaldehyde were investigated using the second-order perturbation theory MP2 in conjunction with the correlation consistent basis sets (aug-cc-pVDZ and aug-cc-pVTZ). Two molecular conformations of paracetamol were considered. Seven equilibrium geometries of dimers were found from the result of the interactions with formaldehyde for each conformation of paracetamol. Interaction energies of complexes with both ZPE and BSSE corrections range from −7.0 to −21.7 kJ mol–1. Topological parameters (such as electron density, its Laplacian, and local electron energy density at the bond critical points) of the bonds from atoms in molecules theory were analyzed in detail. The natural bond orbital analysis showed that the stability of complexes was controlled by noncovalent interactions including O–H···O, N–H···O, C–H···O, C–H···N, C–H···H–C, C···C, and N···O. The red- and blue-shifted hydrogen bonds could both be observed in these complexes. The properties of these interactions were also further examined in water using a polarized continuum model. In water, the stability of the complex was slightly reduced as compared to that in the gas phase.
Tho Huu Nguyen, Tri Huu Nguyen, Thi Thanh Thuy Le, Hoang Vu Dang, and Hue Minh Thi Nguyen, Interactions between Paracetamol and Formaldehyde: Theoretical Investigation and Topological Analysis. ACS Omega 2023, Publication Date: March 22, 2023 https://doi.org/10.1021/acsomega.2c0502
This article references 52 other publications.
- Riley, K. E.; Hobza, P. Noncovalent interactions in biochemistry. Wiley Interdiscip. Rev.: Comput. Mol. Sci. 2011, 1, 3– 17, DOI: 10.1002/wcms.8 [Crossref], [CAS], Google Scholar
- Yamauchi, O. Noncovalent interactions in biocomplexes. Phys. Sci. Rev. 2016, 1, 20160001, DOI: 10.1515/psr-2016-0001 [Crossref], Google Scholar
- Roblin, R. O. Confirmation of the structures of aureomycin and terramycin was one of the year’s high lights in medicinal chemistry. Chem. Eng. News 1953, 31, 48– 49, DOI: 10.1021/cen-v031n001.p048 [ACS Full Text ], [CAS], Google Scholar
- Yunta, M. J. R. It is important to compute intramolecular hydrogen bonding in drug design?. Am. J. Model. Optim. 2017, 5, 24– 57, DOI: 10.12691/ajmo-5-1-3 [Crossref], Google Scholar
- Shankar, K.; Mehendale, H. M. Acetaminophen. In Encyclopedia of Toxicology, 3rd ed.; Wexler, P., Ed.; Academic Press: New York, 2014; pp 26– 29.[Crossref], Google Scholar
- Sehrawat, R.; Tyagi, D. K.; Mittal, R.; Pandey, S. P.; Singh, O. P.; Sharma, A. K. DFT vibrational frequencies studies of acetyl-salicylic acid and Paracetamol. Mater. Today: Proc. 2022, 49, 3151– 3154, DOI: 10.1016/j.matpr.2020.11.158 [Crossref], [CAS], Google Scholar
- Jozwiak-Bebenista, M.; Nowak, J. Z. Paracetamol: Mechanism of action, applications and safety concern. Acta Pol. Pharm. 2014, 71, 11– 23[PubMed], [CAS], Google ScholarPMID: 24779190
- Ghasempour, H.; Dehestani, M.; Hosseini, S. M. A. Theoretical studies of the paracetamol and phenacetin adsorption on single-wall boron-nitride nanotubes: a DFT and MD investigation. Struct. Chem. 2020, 31, 1403– 1417, DOI: 10.1007/s11224-020-01499-8 [Crossref], [CAS], Google Scholar
- Hoang, V. D.; Ly, D. T. H.; Tho, N. H.; Minh, T. N. H. UV spectrophotometric simultaneous determination of paracetamol and ibuprofen in combined tablets by derivative and wavelet transforms. Sci. World J. 2014, 2014, 313609, DOI: 10.1155/2014/313609 [Crossref], Google Scholar
- Srivastava, K.; Shimpi, M. R.; Srivastava, A.; Tandon, P.; Sinha, K.; Velaga, S. P. Vibrational analysis and chemical activity of paracetamol-oxalic acid cocrystal based on monomer and dimer calculations: DFT and AIM approach. RSC Adv. 2016, 6, 10024– 10037, DOI: 10.1039/C5RA24402A [Crossref], [CAS], Google Scholar
- Misra, A. K.; Misra, M.; Panpalia, G. M.; Dorle, A. K. Interaction study of paracetamol with saturated (capric) and unsaturated (oleic) fatty acids. Pharm. Dev. Tech. 2007, 12, 423– 428, DOI: 10.1080/10837450701366895 [Crossref], [PubMed], [CAS], Google Scholar
- Zhai, F. P.; Wei, H. E.; Liu, Y.; Hu, F. Y. Theoretical explanation for the pharmaceutical incompatibility through the cooperativity effect of the drug–drug intermolecular interactions in the phenobarbital···paracetamol···H2O complex. J. Mol. Model. 2019, 25, 181, DOI: 10.1007/s00894-019-4060-1 [Crossref], [PubMed], [CAS], Google Scholar
- Xu, M.; Zhang, B.; Wang, Q.; Yuan, Y.; Sun, L.; Huang, Z. Theoretical study on the hydrogen bonding interactions in paracetamol-water complexes. J. Chil. Chem. Soc. 2018, 63, 3788– 3794, DOI: 10.4067/s0717-97072018000103788 [Crossref], [CAS], Google Scholar
- Dehestani, M.; Pourestarabadi, S. A density functional theory and quantum theory of atoms in molecules study on hydrogen bonding interaction between paracetamol and water molecules. Russ. J. Phys. Chem. B 2016, 10, 890– 896, DOI: 10.1134/S1990793116060191 [Crossref], [CAS], Google Scholar
- Danten, Y.; Tassaing, T.; Besnard, M. Density Functional Theory (DFT) calculations of the infrared absorption spectra of acetaminophen complexes formed with ethanol and acetone species. J. Phys. Chem. A 2006, 110, 8986– 9001, DOI: 10.1021/jp061845l [ACS Full Text ], [CAS], Google Scholar
- Leyk, E.; Wesolowski, M. Interactions between paracetamol and hypromellose in the solid state. Front. Pharmacol. 2019, 10, 1– 11, DOI: 10.3389/fphar.2019.00014 [Crossref], [PubMed], Google Scholar
- Srivastava, K.; Khan, E.; Shimpi, M. R.; Tandon, P.; Sinha, K.; Velaga, S. P. Molecular structure and hydrogen bond interactions of a paracetamol-4,4′-bipyridine cocrystal studied using a vibrational spectroscopic and quantum chemical approach. CrystEngComm 2018, 20, 213– 222, DOI: 10.1039/c7ce01505d [Crossref], [CAS], Google Scholar
- An, G. W.; Zhang, H.; Cheng, X. L.; Zhuo, Q. L.; Lv, Y. C. Electronic structure and hydrogen bond in the crystal of paracetamol drugs. Struct. Chem. 2008, 19, 613– 617, DOI: 10.1007/s11224-008-9333-8 [Crossref], [CAS], Google Scholar
- Kolesov, B. A.; Mikhailenko, M. A.; Boldyreva, E. V. Dynamics of the intermolecular hydrogen bonds in the polymorphs of paracetamol in relation to crystal packing and conformational transitions: A variable-temperature polarized Raman spectroscopy study. Phys. Chem. Chem. Phys. 2011, 13, 14243– 14253, DOI: 10.1039/c1cp20139e [Crossref], [PubMed], [CAS], Google Scholar
- Sala, S.; Danten, Y.; Ventosa, N.; Tassaing, T.; Besnard, M.; Veciana, J. Solute–solvent interactions governing preferential solvation phenomena of acetaminophen in CO2-expanded organic solutions: A spectroscopic and theoretical study. J. Supercrit. Fluids 2006, 38, 295– 305, DOI: 10.1016/j.supflu.2005.11.006 [Crossref], [CAS], Google Scholar
- Sala, S.; Tassaing, T.; Ventosa, N.; Danten, Y.; Besnard, M.; Veciana, J. Molecular insight, through IR Spectroscopy, on solvating phenomena occurring in CO2-expanded solutions. ChemPhysChem 2004, 5, 243– 245, DOI: 10.1002/cphc.200300921 [Crossref], [PubMed], [CAS], Google Scholar
- Du, L.; Mackeprang, K.; Kjaergaard, H. G. Fundamental and overtone vibrational spectroscopy, enthalpy of hydrogen bond formation and equilibrium constant determination of the methanol–dimethylamine complex. Phys. Chem. Chem. Phys. 2013, 15, 10194– 10206, DOI: 10.1039/C3CP50243K [Crossref], [PubMed], [CAS], Google Scholar
- Nassar, M. N.; Nesarikar, V. N.; Lozano, R.; Parker, W. L.; Huang, Y.; Palaniswamy, V.; Xu, W.; Khaselev, N. Influence of formaldehyde impurity in polysorbate 80 and PEG-300 on the stability of a parenteral formulation of BMS-204352: identification and control of the degradation product. Pharm. Dev. Technol. 2004, 9, 189– 195, DOI: 10.1081/pdt-120030249 [Crossref], [PubMed], [CAS], Google Scholar
- Wang, G.; Fiske, J. D.; Jennings, S. P.; Tomasella, F. P.; Palaniswamy, V. A.; Ray, K. L. Identification and control of a degradation product in Avapro film-coated tablet: low dose formulation. Pharm. Dev. Technol. 2008, 13, 393– 399, DOI: 10.1080/10837450802244918 [Crossref], [PubMed], [CAS], Google Scholar
- Gannett, P. M.; Hailu, S.; Daft, J.; James, D.; Rybeck, B.; Tracy, T. S. In vitro reaction of formaldehyde with fenfluramine: conversion to N-methyl fenfluramine. J. Anal. Toxicol. 2001, 25, 88– 92, DOI: 10.1093/jat/25.2.88 [Crossref], [PubMed], [CAS], Google Scholar
- Desai, D. S.; Rubitski, B. A.; Bergum, J. S.; Varia, S. A. Effects of different types of lactose and disintegrant on dissolution stability of hydrochlorothiazide capsule formulations. Int. J. Pharm. 1994, 110, 257– 265, DOI: 10.1016/0378-5173(94)90248-8 [Crossref], [CAS], Google Scholar
- Pápai, I.; Jancsó, G. Hydrogen bonding in methyl-substituted pyridine–water complexes: A theoretical study. J. Phys. Chem. A 2000, 104, 2132– 2137, DOI: 10.1021/jp994094e [ACS Full Text ], [CAS], Google Scholar
- de Carvalho, M. F.; Mosquera, R. A.; Rivelino, R. A density functional theory study of the hydrogen bond interactions in glycine dimers. Chem. Phys. Lett. 2007, 445, 117– 124, DOI: 10.1016/j.cplett.2007.07.077 [Crossref], [CAS], Google Scholar
- Rodrigues-Oliveira, A. F.; Ribeiro, F. W. M.; Cervi, G.; Correra, T. C. Evaluation of common theoretical methods for predicting infrared multiphotonic dissociation vibrational spectra of intramolecular hydrogen-bonded ions. ACS Omega 2018, 3, 9075– 9085, DOI: 10.1021/acsomega.8b00815 [ACS Full Text ], [CAS], Google Scholar
- Chopra, N.; Kaur, D.; Chopra, G. Nature and hierarchy of hydrogen-bonding interactions in binary complexes of azoles with water and hydrogen peroxide. ACS Omega 2018, 3, 12688– 12702, DOI: 10.1021/acsomega.8b01523 [ACS Full Text ], [CAS], Google Scholar
- Boys, S. F.; Bernardi, F. The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors. Mol. Phys. 1970, 19, 553– 566, DOI: 10.1080/00268977000101561 [Crossref], [CAS], Google Scholar
- Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Petersson, G. A.; Nakatsuji, H.; Li, X.; Caricato, M.; Marenich, A.; Bloino, J.; Janesko, B. G.; Gomperts, R.; Mennucci, B.; Hratchian, H. P.; Ortiz, J. V.; Izmaylov, A. F.; Sonnenberg, J. L.; Williams-Young, D.; Ding, F.; Lipparini, F.; Egidi, F.; Goings, J.; Peng, B.; Petrone, A.; Henderson, T.; Ranasinghe, D.; Zakrzewski, V. G.; Gao, J.; Rega, N.; Zheng, G.; Liang, W.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Throssell, K.; Montgomery, J. A., Jr., Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Keith, T.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Millam, J. M.; Klene, M.; Adamo, C.; Cammi, R.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Farkas, O.; Foresman, J. B.; Fox, D. J. Gaussian 09 Revision C.01; Gaussian Inc.: Wallingford CT, 2010.Google Scholar
- Lu, T.; Chen, F. Multiwfn: A multifunctional wavefunction analyzer. J. Comput. Chem. 2012, 33, 580– 592, DOI: 10.1002/jcc.22885 [Crossref], [PubMed], [CAS], Google Scholar
- Espinosa, E.; Molins, E.; Lecomte, C. Hydrogen bond strengths revealed by topological analyses of experimentally observed electron densities. Chem. Phys. Lett. 1998, 285, 170– 173, DOI: 10.1016/S0009-2614(98)00036-0 [Crossref], [CAS], Google Scholar
- Cossi, M.; Barone, V.; Mennucci, B.; Tomasi, J. Ab initio study of ionic solutions by a polarizable continuum dielectric model. Chem. Phys. Lett. 1998, 286, 253– 260, DOI: 10.1016/S0009-2614(98)00106-7 [Crossref], [CAS], Google Scholar
- Tomasi, J.; Mennucci, B.; Cancès, E. The IEF version of the PCM solvation method: an overview of a new method addressed to study molecular solutes at the QM ab initio level. J. Mol. Struct. THEOCHEM 1999, 464, 211– 226, DOI: 10.1016/S0166-1280(98)00553-3 [Crossref], [CAS], Google Scholar
- Klamt, A.; Moya, C.; Palomar, J. A comprehensive comparison of the IEFPCM and SS(V)PE continuum solvation methods with the COSMO approach. J. Chem. Theory and Comput. 2015, 11, 4220– 4225, DOI: 10.1021/acs.jctc.5b00601 [ACS Full Text ], [CAS], Google Scholar
- Mennucci, B. Hydrogen bond versus polar effects: An ab initio analysis on n → π* absorption spectra and n nuclear shieldings of diazines in solution. J. Am. Chem. Soc. 2002, 124, 1506– 1515, DOI: 10.1021/ja0118542 [ACS Full Text ], [CAS], Google Scholar
- Haisa, M.; Kashino, S.; Kawai, R.; Maeda, H. The monoclinic form of {\it p}-hydroxyacetanilide. Acta. Crystallogr. B: Struct. Sci. Cryst. Eng. Mater. 1976, 32, 1283– 1285, DOI: 10.1107/S0567740876012223 [Crossref], Google Scholar
- Druzhbin, D. A.; Drebushchak, T. N.; Min’kov, V. S.; Boldyreva, E. V. Crystal structure of two paracetamol polymorphs at 20 K: A search for the ‘structure-property’ relationship. J. Struct. Chem. 2015, 56, 317– 323, DOI: 10.1134/S002247661502016X [Crossref], [CAS], Google Scholar
- Du, J. J.; Lai, F.; Váradi, L.; Williams, P. A.; Groundwater, P. W.; Platts, J. A.; Hibbs, D. E.; Overgaard, J. Monoclinic paracetamol vs. paracetamol-4,4′-bipyridine co-crystal; what is the difference? a charge density study. Crystals 2018, 8, 46, DOI: 10.3390/cryst8010046 [Crossref], Google Scholar
- Haisa, M.; Kashino, S.; Maeda, H. The orthorhombic form of p-hydroxyacetanilide. Acta. Crystallogr. B: Struct. Sci. Cryst. Eng. Mater. 1974, 30, 2510– 2512, DOI: 10.1107/S0567740874007473 [Crossref], [CAS], Google Scholar
- “Van Der Waals Radius of the elements” Mathematica’s ElementData function from Wolfram Research, Inc. https://periodictable.com/Properties/A/VanDerWaalsRadius.an.html (accessed Oct 29, 2021).Google Scholar
- Steiner, T. The hydrogen bond in the solid state. Angew. Chem., Int. Ed. 2002, 41, 48– 76, DOI: 10.1002/1521-3773(20020104)41:1<48::AID-ANIE48>3.0.CO;2-U [Crossref], [CAS], Google Scholar
- Popelier, P. Atoms in Molecules: An Introduction, 1st ed.; Prentice Hall, 2000.[Crossref], Google Scholar
- Bader, R. F. W. A quantum theory of molecular structure and its applications. Chem. Rev. 1991, 91, 893– 928, DOI: 10.1021/cr00005a013 [ACS Full Text ], [CAS], Google Scholar
- Mallinson, P. R.; Woźniak, K.; Smith, G. T.; McCormack, K. L. A charge density analysis of cationic and anionic hydrogen bonds in a ‘proton sponge’ complex. J. Am. Chem. Soc. 1997, 119, 11502– 11509, DOI: 10.1021/ja971940v [ACS Full Text ], [CAS], Google Scholar
- Johnson, E. R.; Keinan, S.; Mori-Sánchez, P.; Contreras-García, J.; Cohen, A. J.; Yang, W. Revealing noncovalent interactions. J. Am. Chem. Soc. 2010, 132, 6498– 6506, DOI: 10.1021/ja100936w [ACS Full Text ], [CAS], Google Scholar
- Saleh, G.; Gatti, C.; Presti, L. L.; Contreras-García, J. Revealing non-covalent interactions in molecular crystals through their experimental electron densities. Chemistry 2012, 18, 15523– 15536, DOI: 10.1002/chem.201201290 [Crossref], [PubMed], [CAS], Google Scholar
- Humphrey, W.; Dalke, A.; Schulten, K. VMD: Visual molecular dynamics. J. Mol. Graph. 1996, 14, 33– 38, DOI: 10.1016/0263-7855(96)00018-5 [Crossref], [PubMed], [CAS], Google Scholar
- Alabugin, I. V.; Manoharan, M.; Peabody, S.; Weinhold, F. Electronic basis of improper hydrogen bonding: A subtle balance of hyperconjugation and rehybridization. J. Am. Chem. Soc. 2003, 125, 5973– 5987, DOI: 10.1021/ja034656e [ACS Full Text ], [CAS], Google Scholar
- Aquino, A. J. A.; Tunega, D.; Haberhauer, G.; Gerzabek, M. H.; Lischka, H. Solvent effects on hydrogen bondsa theoretical study. J. Phys. Chem. A 2002, 106, 1862– 1871, DOI: 10.1021/jp013677x [ACS Full Text ], [CAS], Google Scholar