Interactions between Paracetamol and Formaldehyde: Theoretical Investigation and Topological Analysis (Abstract and References)
In this work, noncovalent interactions including hydrogen bonds, C···C, N···O, and van der Waals forces between paracetamol and formaldehyde were investigated using the second-order perturbation theory MP2 in conjunction with the correlation consistent basis sets (aug-cc-pVDZ and aug-cc-pVTZ). Two molecular conformations of paracetamol were considered. Seven equilibrium geometries of dimers were found from the result of the interactions with formaldehyde for each conformation of paracetamol. Interaction energies of complexes with both ZPE and BSSE corrections range from −7.0 to −21.7 kJ mol–1. Topological parameters (such as electron density, its Laplacian, and local electron energy density at the bond critical points) of the bonds from atoms in molecules theory were analyzed in detail. The natural bond orbital analysis showed that the stability of complexes was controlled by noncovalent interactions including O–H···O, N–H···O, C–H···O, C–H···N, C–H···H–C, C···C, and N···O. The red- and blue-shifted hydrogen bonds could both be observed in these complexes. The properties of these interactions were also further examined in water using a polarized continuum model. In water, the stability of the complex was slightly reduced as compared to that in the gas phase.
Tho Huu Nguyen, Tri Huu Nguyen, Thi Thanh Thuy Le, Hoang Vu Dang, and Hue Minh Thi Nguyen, Interactions between Paracetamol and Formaldehyde: Theoretical Investigation and Topological Analysis. ACS Omega 2023, Publication Date: March 22, 2023 https://doi.org/10.1021/acsomega.2c0502
This article references 52 other publications.
Riley, K. E.; Hobza, P. Noncovalent interactions in biochemistry.Wiley Interdiscip. Rev.: Comput. Mol. Sci.2011, 1, 3– 17, DOI: 10.1002/wcms.8 [Crossref], [CAS], Google Scholar
Yamauchi, O. Noncovalent interactions in biocomplexes.Phys. Sci. Rev.2016, 1, 20160001, DOI: 10.1515/psr-2016-0001 [Crossref], Google Scholar
Roblin, R. O. Confirmation of the structures of aureomycin and terramycin was one of the year’s high lights in medicinal chemistry. Chem. Eng. News1953, 31, 48– 49, DOI: 10.1021/cen-v031n001.p048 [ACS Full Text ], [CAS], Google Scholar
Yunta, M. J. R. It is important to compute intramolecular hydrogen bonding in drug design?.Am. J. Model. Optim.2017, 5, 24– 57, DOI: 10.12691/ajmo-5-1-3 [Crossref], Google Scholar
Shankar, K.; Mehendale, H. M. Acetaminophen. InEncyclopedia of Toxicology, 3rd ed.; Wexler, P., Ed.; Academic Press: New York, 2014; pp 26– 29.[Crossref], Google Scholar
Sehrawat, R.; Tyagi, D. K.; Mittal, R.; Pandey, S. P.; Singh, O. P.; Sharma, A. K. DFT vibrational frequencies studies of acetyl-salicylic acid and Paracetamol.Mater. Today: Proc.2022, 49, 3151– 3154, DOI: 10.1016/j.matpr.2020.11.158 [Crossref], [CAS], Google Scholar
Jozwiak-Bebenista, M.; Nowak, J. Z. Paracetamol: Mechanism of action, applications and safety concern.Acta Pol. Pharm.2014, 71, 11– 23[PubMed], [CAS], Google ScholarPMID: 24779190
Ghasempour, H.; Dehestani, M.; Hosseini, S. M. A. Theoretical studies of the paracetamol and phenacetin adsorption on single-wall boron-nitride nanotubes: a DFT and MD investigation.Struct. Chem.2020, 31, 1403– 1417, DOI: 10.1007/s11224-020-01499-8 [Crossref], [CAS], Google Scholar
Hoang, V. D.; Ly, D. T. H.; Tho, N. H.; Minh, T. N. H. UV spectrophotometric simultaneous determination of paracetamol and ibuprofen in combined tablets by derivative and wavelet transforms. Sci. World J.2014, 2014, 313609, DOI: 10.1155/2014/313609 [Crossref], Google Scholar
Srivastava, K.; Shimpi, M. R.; Srivastava, A.; Tandon, P.; Sinha, K.; Velaga, S. P. Vibrational analysis and chemical activity of paracetamol-oxalic acid cocrystal based on monomer and dimer calculations: DFT and AIM approach.RSC Adv.2016, 6, 10024– 10037, DOI: 10.1039/C5RA24402A [Crossref], [CAS], Google Scholar
Misra, A. K.; Misra, M.; Panpalia, G. M.; Dorle, A. K. Interaction study of paracetamol with saturated (capric) and unsaturated (oleic) fatty acids.Pharm. Dev. Tech.2007, 12, 423– 428, DOI: 10.1080/10837450701366895 [Crossref], [PubMed], [CAS], Google Scholar
Zhai, F. P.; Wei, H. E.; Liu, Y.; Hu, F. Y. Theoretical explanation for the pharmaceutical incompatibility through the cooperativity effect of the drug–drug intermolecular interactions in the phenobarbital···paracetamol···H2O complex.J. Mol. Model.2019, 25, 181, DOI: 10.1007/s00894-019-4060-1 [Crossref], [PubMed], [CAS], Google Scholar
Xu, M.; Zhang, B.; Wang, Q.; Yuan, Y.; Sun, L.; Huang, Z. Theoretical study on the hydrogen bonding interactions in paracetamol-water complexes.J. Chil. Chem. Soc.2018, 63, 3788– 3794, DOI: 10.4067/s0717-97072018000103788 [Crossref], [CAS], Google Scholar
Dehestani, M.; Pourestarabadi, S. A density functional theory and quantum theory of atoms in molecules study on hydrogen bonding interaction between paracetamol and water molecules.Russ. J. Phys. Chem. B2016, 10, 890– 896, DOI: 10.1134/S1990793116060191 [Crossref], [CAS], Google Scholar
Danten, Y.; Tassaing, T.; Besnard, M. Density Functional Theory (DFT) calculations of the infrared absorption spectra of acetaminophen complexes formed with ethanol and acetone species.J. Phys. Chem. A2006, 110, 8986– 9001, DOI: 10.1021/jp061845l [ACS Full Text ], [CAS], Google Scholar
Leyk, E.; Wesolowski, M. Interactions between paracetamol and hypromellose in the solid state.Front. Pharmacol.2019, 10, 1– 11, DOI: 10.3389/fphar.2019.00014 [Crossref], [PubMed], Google Scholar
Srivastava, K.; Khan, E.; Shimpi, M. R.; Tandon, P.; Sinha, K.; Velaga, S. P. Molecular structure and hydrogen bond interactions of a paracetamol-4,4′-bipyridine cocrystal studied using a vibrational spectroscopic and quantum chemical approach.CrystEngComm2018, 20, 213– 222, DOI: 10.1039/c7ce01505d [Crossref], [CAS], Google Scholar
An, G. W.; Zhang, H.; Cheng, X. L.; Zhuo, Q. L.; Lv, Y. C. Electronic structure and hydrogen bond in the crystal of paracetamol drugs.Struct. Chem.2008, 19, 613– 617, DOI: 10.1007/s11224-008-9333-8 [Crossref], [CAS], Google Scholar
Kolesov, B. A.; Mikhailenko, M. A.; Boldyreva, E. V. Dynamics of the intermolecular hydrogen bonds in the polymorphs of paracetamol in relation to crystal packing and conformational transitions: A variable-temperature polarized Raman spectroscopy study. Phys. Chem. Chem. Phys.2011, 13, 14243– 14253, DOI: 10.1039/c1cp20139e [Crossref], [PubMed], [CAS], Google Scholar
Sala, S.; Danten, Y.; Ventosa, N.; Tassaing, T.; Besnard, M.; Veciana, J. Solute–solvent interactions governing preferential solvation phenomena of acetaminophen in CO2-expanded organic solutions: A spectroscopic and theoretical study.J. Supercrit. Fluids2006, 38, 295– 305, DOI: 10.1016/j.supflu.2005.11.006 [Crossref], [CAS], Google Scholar
Sala, S.; Tassaing, T.; Ventosa, N.; Danten, Y.; Besnard, M.; Veciana, J. Molecular insight, through IR Spectroscopy, on solvating phenomena occurring in CO2-expanded solutions.ChemPhysChem2004, 5, 243– 245, DOI: 10.1002/cphc.200300921 [Crossref], [PubMed], [CAS], Google Scholar
Du, L.; Mackeprang, K.; Kjaergaard, H. G. Fundamental and overtone vibrational spectroscopy, enthalpy of hydrogen bond formation and equilibrium constant determination of the methanol–dimethylamine complex. Phys. Chem. Chem. Phys.2013, 15, 10194– 10206, DOI: 10.1039/C3CP50243K [Crossref], [PubMed], [CAS], Google Scholar
Nassar, M. N.; Nesarikar, V. N.; Lozano, R.; Parker, W. L.; Huang, Y.; Palaniswamy, V.; Xu, W.; Khaselev, N. Influence of formaldehyde impurity in polysorbate 80 and PEG-300 on the stability of a parenteral formulation of BMS-204352: identification and control of the degradation product. Pharm. Dev. Technol.2004, 9, 189– 195, DOI: 10.1081/pdt-120030249 [Crossref], [PubMed], [CAS], Google Scholar
Wang, G.; Fiske, J. D.; Jennings, S. P.; Tomasella, F. P.; Palaniswamy, V. A.; Ray, K. L. Identification and control of a degradation product in Avapro film-coated tablet: low dose formulation.Pharm. Dev. Technol.2008, 13, 393– 399, DOI: 10.1080/10837450802244918 [Crossref], [PubMed], [CAS], Google Scholar
Gannett, P. M.; Hailu, S.; Daft, J.; James, D.; Rybeck, B.; Tracy, T. S. In vitro reaction of formaldehyde with fenfluramine: conversion to N-methyl fenfluramine.J. Anal. Toxicol.2001, 25, 88– 92, DOI: 10.1093/jat/25.2.88 [Crossref], [PubMed], [CAS], Google Scholar
Desai, D. S.; Rubitski, B. A.; Bergum, J. S.; Varia, S. A. Effects of different types of lactose and disintegrant on dissolution stability of hydrochlorothiazide capsule formulations. Int. J. Pharm.1994, 110, 257– 265, DOI: 10.1016/0378-5173(94)90248-8 [Crossref], [CAS], Google Scholar
Pápai, I.; Jancsó, G. Hydrogen bonding in methyl-substituted pyridine–water complexes: A theoretical study.J. Phys. Chem. A2000, 104, 2132– 2137, DOI: 10.1021/jp994094e [ACS Full Text ], [CAS], Google Scholar
de Carvalho, M. F.; Mosquera, R. A.; Rivelino, R. A density functional theory study of the hydrogen bond interactions in glycine dimers.Chem. Phys. Lett.2007, 445, 117– 124, DOI: 10.1016/j.cplett.2007.07.077 [Crossref], [CAS], Google Scholar
Rodrigues-Oliveira, A. F.; Ribeiro, F. W. M.; Cervi, G.; Correra, T. C. Evaluation of common theoretical methods for predicting infrared multiphotonic dissociation vibrational spectra of intramolecular hydrogen-bonded ions.ACS Omega2018, 3, 9075– 9085, DOI: 10.1021/acsomega.8b00815 [ACS Full Text ], [CAS], Google Scholar
Chopra, N.; Kaur, D.; Chopra, G. Nature and hierarchy of hydrogen-bonding interactions in binary complexes of azoles with water and hydrogen peroxide.ACS Omega2018, 3, 12688– 12702, DOI: 10.1021/acsomega.8b01523 [ACS Full Text ], [CAS], Google Scholar
Boys, S. F.; Bernardi, F. The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors. Mol. Phys.1970, 19, 553– 566, DOI: 10.1080/00268977000101561 [Crossref], [CAS], Google Scholar
Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Petersson, G. A.; Nakatsuji, H.; Li, X.; Caricato, M.; Marenich, A.; Bloino, J.; Janesko, B. G.; Gomperts, R.; Mennucci, B.; Hratchian, H. P.; Ortiz, J. V.; Izmaylov, A. F.; Sonnenberg, J. L.; Williams-Young, D.; Ding, F.; Lipparini, F.; Egidi, F.; Goings, J.; Peng, B.; Petrone, A.; Henderson, T.; Ranasinghe, D.; Zakrzewski, V. G.; Gao, J.; Rega, N.; Zheng, G.; Liang, W.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Throssell, K.; Montgomery, J. A., Jr., Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Keith, T.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Millam, J. M.; Klene, M.; Adamo, C.; Cammi, R.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Farkas, O.; Foresman, J. B.; Fox, D. J. Gaussian 09 Revision C.01; Gaussian Inc.: Wallingford CT, 2010.Google Scholar
Lu, T.; Chen, F. Multiwfn: A multifunctional wavefunction analyzer.J. Comput. Chem.2012, 33, 580– 592, DOI: 10.1002/jcc.22885 [Crossref], [PubMed], [CAS], Google Scholar
Espinosa, E.; Molins, E.; Lecomte, C. Hydrogen bond strengths revealed by topological analyses of experimentally observed electron densities.Chem. Phys. Lett.1998, 285, 170– 173, DOI: 10.1016/S0009-2614(98)00036-0 [Crossref], [CAS], Google Scholar
Cossi, M.; Barone, V.; Mennucci, B.; Tomasi, J. Ab initio study of ionic solutions by a polarizable continuum dielectric model.Chem. Phys. Lett.1998, 286, 253– 260, DOI: 10.1016/S0009-2614(98)00106-7 [Crossref], [CAS], Google Scholar
Tomasi, J.; Mennucci, B.; Cancès, E. The IEF version of the PCM solvation method: an overview of a new method addressed to study molecular solutes at the QM ab initio level.J. Mol. Struct. THEOCHEM1999, 464, 211– 226, DOI: 10.1016/S0166-1280(98)00553-3 [Crossref], [CAS], Google Scholar
Klamt, A.; Moya, C.; Palomar, J. A comprehensive comparison of the IEFPCM and SS(V)PE continuum solvation methods with the COSMO approach.J. Chem. Theory and Comput.2015, 11, 4220– 4225, DOI: 10.1021/acs.jctc.5b00601 [ACS Full Text ], [CAS], Google Scholar
Mennucci, B. Hydrogen bond versus polar effects: An ab initio analysis on n → π* absorption spectra and n nuclear shieldings of diazines in solution. J. Am. Chem. Soc.2002, 124, 1506– 1515, DOI: 10.1021/ja0118542 [ACS Full Text ], [CAS], Google Scholar
Haisa, M.; Kashino, S.; Kawai, R.; Maeda, H. The monoclinic form of {\it p}-hydroxyacetanilide.Acta. Crystallogr. B: Struct. Sci. Cryst. Eng. Mater.1976, 32, 1283– 1285, DOI: 10.1107/S0567740876012223 [Crossref], Google Scholar
Druzhbin, D. A.; Drebushchak, T. N.; Min’kov, V. S.; Boldyreva, E. V. Crystal structure of two paracetamol polymorphs at 20 K: A search for the ‘structure-property’ relationship. J. Struct. Chem.2015, 56, 317– 323, DOI: 10.1134/S002247661502016X [Crossref], [CAS], Google Scholar
Du, J. J.; Lai, F.; Váradi, L.; Williams, P. A.; Groundwater, P. W.; Platts, J. A.; Hibbs, D. E.; Overgaard, J. Monoclinic paracetamol vs. paracetamol-4,4′-bipyridine co-crystal; what is the difference? a charge density study. Crystals2018, 8, 46, DOI: 10.3390/cryst8010046 [Crossref], Google Scholar
Haisa, M.; Kashino, S.; Maeda, H. The orthorhombic form of p-hydroxyacetanilide.Acta. Crystallogr. B: Struct. Sci. Cryst. Eng. Mater.1974, 30, 2510– 2512, DOI: 10.1107/S0567740874007473 [Crossref], [CAS], Google Scholar
Steiner, T. The hydrogen bond in the solid state.Angew. Chem., Int. Ed.2002, 41, 48– 76, DOI: 10.1002/1521-3773(20020104)41:1<48::AID-ANIE48>3.0.CO;2-U [Crossref], [CAS], Google Scholar
Popelier, P. Atoms in Molecules: An Introduction, 1st ed.; Prentice Hall, 2000.[Crossref], Google Scholar
Bader, R. F. W. A quantum theory of molecular structure and its applications.Chem. Rev.1991, 91, 893– 928, DOI: 10.1021/cr00005a013 [ACS Full Text ], [CAS], Google Scholar
Mallinson, P. R.; Woźniak, K.; Smith, G. T.; McCormack, K. L. A charge density analysis of cationic and anionic hydrogen bonds in a ‘proton sponge’ complex.J. Am. Chem. Soc.1997, 119, 11502– 11509, DOI: 10.1021/ja971940v [ACS Full Text ], [CAS], Google Scholar
Johnson, E. R.; Keinan, S.; Mori-Sánchez, P.; Contreras-García, J.; Cohen, A. J.; Yang, W. Revealing noncovalent interactions.J. Am. Chem. Soc.2010, 132, 6498– 6506, DOI: 10.1021/ja100936w [ACS Full Text ], [CAS], Google Scholar
Saleh, G.; Gatti, C.; Presti, L. L.; Contreras-García, J. Revealing non-covalent interactions in molecular crystals through their experimental electron densities.Chemistry2012, 18, 15523– 15536, DOI: 10.1002/chem.201201290 [Crossref], [PubMed], [CAS], Google Scholar
Alabugin, I. V.; Manoharan, M.; Peabody, S.; Weinhold, F. Electronic basis of improper hydrogen bonding: A subtle balance of hyperconjugation and rehybridization.J. Am. Chem. Soc.2003, 125, 5973– 5987, DOI: 10.1021/ja034656e [ACS Full Text ], [CAS], Google Scholar
Aquino, A. J. A.; Tunega, D.; Haberhauer, G.; Gerzabek, M. H.; Lischka, H. Solvent effects on hydrogen bondsa theoretical study. J. Phys. Chem. A2002, 106, 1862– 1871, DOI: 10.1021/jp013677x [ACS Full Text ], [CAS], Google Scholar
Leave a Reply