Histone acetyltransferase p300
Histone acetyltransferase p300 also known as p300 HAT or E1A-associated protein p300 (where E1A = adenovirus early region 1A) also known as EP300 or p300 is an enzyme that, in humans, is encoded by the EP300 gene. It functions as histone acetyltransferase that regulates transcription of genes via chromatin remodeling by allowing histone proteins to wrap DNA less tightly. This enzyme plays an essential role in regulating cell growth and division, prompting cells to mature and assume specialized functions (differentiate), and preventing the growth of cancerous tumors. The p300 protein appears to be critical for normal development before and after birth.
- Eckner R, Ewen ME, Newsome D, Gerdes M, DeCaprio JA, Lawrence JB, Livingston DM (April 1994). “Molecular cloning and functional analysis of the adenovirus E1A-associated 300-kD protein (p300) reveals a protein with properties of a transcriptional adaptor”. Genes Dev. 8 (8): 869–84. doi:10.1101/gad.8.8.869. PMID 7523245.
The EP300 gene is located on the long (q) arm of the human chromosome 22 at position 13.2. This gene encodes the adenovirus E1A-associated cellular p300 transcriptional co-activator protein.
EP300 is closely related to another gene, CREB binding protein, which is found on human chromosome 16.
Function
p300 HAT functions as histone acetyltransferase[6] that regulates transcription via chromatin remodeling, and is important in the processes of cell proliferation and differentiation. It mediates cAMP-gene regulation by binding specifically to phosphorylated CREB protein.
- Ogryzko VV, Schiltz RL, Russanova V, Howard BH, Nakatani Y (1996). “The transcriptional coactivators p300 and CBP are histone acetyltransferases”. Cell. 87 (5): 953–9. doi:10.1016/S0092-8674(00)82001-2. PMID 8945521.
p300 HAT contains a bromodomain which is involved in IL6 signaling.
- Ntranos A, Casaccia P (June 2016). “Bromodomains: Translating the words of lysine acetylation into myelin injury and repair”. Neuroscience Letters. 625: 4–10. doi:10.1016/j.neulet.2015.10.015. PMC 4841751. PMID 26472704.
This gene has also been identified as a co-activator of HIF1A (hypoxia-inducible factor 1 alpha), and, thus, plays a role in the stimulation of hypoxia-induced genes such as VEGF.
Mechanism
The p300 protein carries out its function of activating transcription by binding to transcription factors, and the transcription machinery. On the basis of this function, p300 is called a transcriptional coactivator. The p300 interaction with transcription factors is managed by one or more of p300 domains: the nuclear receptor interaction domain (RID), the KIX domain (CREB and MYB interaction domain), the cysteine/histidine regions (TAZ1/CH1 and TAZ2/CH3) and the interferon response binding domain (IBiD). The last four domains, KIX, TAZ1, TAZ2 and IBiD of p300, each bind tightly to a sequence spanning both transactivation domains 9aaTADs of transcription factor p53.
- Teufel DP, Freund SM, Bycroft M, Fersht AR (April 2007). “Four domains of p300 each bind tightly to a sequence spanning both transactivation subdomains of p53”. PNAS. 104 (17): 7009–7014. Bibcode:2007PNAS..104.7009T. doi:10.1073/pnas.0702010104. PMC1855428. PMID17438265.; Piskacek S, Gregor M, Nemethova M, Grabner M, Kovarik P, Piskacek M (June 2007). “Nine-amino-acid transactivation domain: establishment and prediction utilities”. Genomics. 89 (6): 756–68. doi:10.1016/j.ygeno.2007.02.003. PMID17467953.
Leave a Reply