k

Cryptanaerobacter phenolicus transforms phenol into benzoate via 4-hydroxybenzoate

Benzoic acid occurs naturally in many plants and serves as an intermediate in the biosynthesis of many secondary metabolitesSalts of benzoic acid are used as food preservatives. Benzoic acid is an important precursor for the industrial synthesis of many other organic substances. The salts and esters of benzoic acid are known as benzoates.

Benzoic acid occurs naturally as do its esters in many plant and animal species. Appreciable amounts are found in most berries (around 0.05%). Ripe fruits of several Vaccinium species (e.g., cranberryV. vitis macrocarponbilberryV. myrtillus) contain as much as 0.03–0.13% free benzoic acid. Benzoic acid is also formed in apples after infection with the fungus Nectria galligena. Among animals, benzoic acid has been identified primarily in omnivorous or phytophageous species, e.g., in viscera and muscles of the rock ptarmigan (Lagopus muta) as well as in gland secretions of male muskoxen (Ovibos moschatus) or Asian bull elephants (Elephas maximus). Gum benzoin contains up to 20% of benzoic acid and 40% benzoic acid esters.

Safety and mammalian metabolism

It is excreted as hippuric acid. Benzoic acid is metabolized by butyrate-CoA ligase into an intermediate product, benzoyl-CoA, which is then metabolized by glycine N-acyltransferase into hippuric acid. Humans metabolize toluene which is also excreted as hippuric acid.

For humans, the World Health Organization‘s International Programme on Chemical Safety (IPCS) suggests a provisional tolerable intake would be 5 mg/kg body weight per day. Cats have a significantly lower tolerance against benzoic acid and its salts than rats and mice. Lethal dose for cats can be as low as 300 mg/kg body weight. The oral LD50 for rats is 3040 mg/kg, for mice it is 1940–2263 mg/kg.

In Taipei, Taiwan, a city health survey in 2010 found that 30% of dried and pickled food products had benzoic acid.

In terms of its biosynthesis, benzoate is produced in plants from cinnamic acid. A pathway has been identified from phenol via 4-hydroxybenzoate.

Cryptanaerobacter phenolicus is a gram-positive anaerobic bacterial species in the genus Cryptanaerobacter.

The genus Cryptanaerobacter contains a single species, namely C. phenolicus (Type species of the genus).; New Latin noun phenol –olisphenolLatin masculine gender suff. –icus, suffix used in adjectives with the sense of belonging to; New Latin masculine gender adjective phenolicus, belonging to phenol.)

  • Cryptanaerobacter phenolicus gen. nov., sp. nov., an anaerobe that transforms phenol into benzoate via 4-hydroxybenzoate. Pierre Juteau, Valérie Côté, Marie-France Duckett, Réjean Beaudet, François Lépine, Richard Villemur and Jean-Guy Bisaillon, IJSEM, January 2005, vol. 55, no. 1, pages 245-250, doi:10.1099/ijs.0.02914-0

External links

Categories

Post a Comment

Your email address will not be published. Required fields are marked *