Porreca F, Mosberg HI, Hurst R, Hruby VJ, Burks TF (August 1984). “Roles of mu, delta and kappa opioid receptors in spinal and supraspinal mediation of gastrointestinal transit effects and hot-plate analgesia in the mouse”. The Journal of Pharmacology and Experimental Therapeutics. 230 (2): 341–8. PMID6086883.
Raynor K, Kong H, Chen Y, Yasuda K, Yu L, Bell GI, Reisine T (February 1994). “Pharmacological characterization of the cloned kappa-, delta-, and mu-opioid receptors”. Molecular Pharmacology. 45 (2): 330–4. PMID8114680.
Zagon IS, Isayama T, McLaughlin PJ (January 1994). “Preproenkephalin mRNA expression in the developing and adult rat brain”. Brain Research. Molecular Brain Research. 21 (1–2): 85–98. doi:10.1016/0169-328x(94)90381-6. PMID8164525.
The enkephalins are considered to be the primary endogenous ligands of the δ-opioid receptor, due to their high potency and selectivity for the site over the other endogenous opioids.
Met-enkephalin was discovered and characterized by John Hughes, Hans Kosterlitz, et al. in 1975 after a search for endogenous ligands of the opioid receptors.
Krajnik M, Schäfer M, Sobanski P, et al. (May 2010). “Enkephalin, its precursor, processing enzymes, and receptor as part of a local opioid network throughout the respiratory system of lung cancer patients”. Human Pathology. 41 (5): 632–42. doi:10.1016/j.humpath.2009.08.025. PMID20040394.
Proenkephalin A contains four sequences of met-enkephalin (at the following positions: 100–104; 107–111; 136–140; 210–214), and as a result, its cleavage generates four copies of met-enkephalin peptides at once. In addition, anabolism of proenkephalin A results in the production of one copy each of two C-terminal-extended met-enkephalin derivatives, the heptapeptide met-enkephalin-arg-phe (261–267), and the octapeptide met-enkephalin-arg-gly-leu (186–193), though whether they affect the opioid receptors in a similar manner as met-enkephalin is not entirely clear.
Vats ID, Chaudhary S, Karar J, Nath M, Pasha Q, Pasha S (October 2009). “Endogenous peptide: Met-enkephalin-Arg-Phe, differently regulate expression of opioid receptors on chronic treatment”. Neuropeptides. 43 (5): 355–62. doi:10.1016/j.npep.2009.07.003. PMID19716174. S2CID19181608.
Benuck M, Berg MJ, Marks N (1982). “Separate metabolic pathways for Leu-enkephalin and Met-enkephalin-Arg(6)-Phe(7) degradation by rat striatal synaptosomal membranes“. Neurochemistry International. 4 (5): 389–96. doi:10.1016/0197-0186(82)90081-X. PMID20487892. S2CID23138078.
It is also the endogenous ligand of the opioid growth factor receptor (OGFR; formerly known as the ζ-opioid receptor), which plays a role in the regulation of tissue growth and regeneration; hence why met-enkephalin is sometimes called OGF instead.
These properties are considered undesirable in pharmaceuticals as large doses would need to be administered multiple times an hour to maintain a therapeutically relevant effect, making it unlikely that met-enkephalin will ever be used as a medicine.
[D-Ala2]-Met-enkephalinamide (DALA), is a synthetic enkephalin analog which is not susceptible to degradation by brain enzymes and at low doses (5 to 10 micrograms) caused profound, long-lasting, morphine-like analgesia when microinjected into a rat’s brain.
Krajnik M, Schäfer M, Sobanski P, et al. (May 2010). “Enkephalin, its precursor, processing enzymes, and receptor as part of a local opioid network throughout the respiratory system of lung cancer patients”. Human Pathology. 41 (5): 632–42. doi:10.1016/j.humpath.2009.08.025. PMID20040394.
Vats ID, Chaudhary S, Karar J, Nath M, Pasha Q, Pasha S (October 2009). “Endogenous peptide: Met-enkephalin-Arg-Phe, differently regulate expression of opioid receptors on chronic treatment”. Neuropeptides. 43 (5): 355–62. doi:10.1016/j.npep.2009.07.003. PMID19716174. S2CID19181608.
Benuck M, Berg MJ, Marks N (1982). “Separate metabolic pathways for Leu-enkephalin and Met-enkephalin-Arg(6)-Phe(7) degradation by rat striatal synaptosomal membranes”. Neurochemistry International. 4 (5): 389–96. doi:10.1016/0197-0186(82)90081-X. PMID20487892. S2CID23138078.
Colaianni L, Kung SC, Taggart DK, Picca RA, Greaves J, Penner RM, Cioffi N (July 2014). “Reduction of spectral interferences using ultraclean gold nanowire arrays in the LDI-MS analysis of a model peptide”. Analytical and Bioanalytical Chemistry. 406 (19): 4571–83. doi:10.1007/s00216-014-7876-7. PMID24980599. S2CID24046957.
Schiller PW, Yam CF, Lis M (May 1977). “Evidence for topographical analogy between methionine-enkephalin and morphine derivatives”. Biochemistry. 16 (9): 1831–8. doi:10.1021/bi00628a011. PMID870028.
Porreca F, Mosberg HI, Hurst R, Hruby VJ, Burks TF (August 1984). “Roles of mu, delta and kappa opioid receptors in spinal and supraspinal mediation of gastrointestinal transit effects and hot-plate analgesia in the mouse”. The Journal of Pharmacology and Experimental Therapeutics. 230 (2): 341–8. PMID6086883.
Raynor K, Kong H, Chen Y, Yasuda K, Yu L, Bell GI, Reisine T (February 1994). “Pharmacological characterization of the cloned kappa-, delta-, and mu-opioid receptors”. Molecular Pharmacology. 45 (2): 330–4. PMID8114680.