Adrenal ferredoxin (also adrenodoxin (ADX), adrenodoxin, mitochondrial, hepatoredoxin, ferredoxin-1 (FDX1)) is a protein that in humans is encoded by the FDX1gene.
Mittal S, Zhu YZ, Vickery LE (Sep 1988). “Molecular cloning and sequence analysis of human placental ferredoxin”. Arch Biochem Biophys. 264 (2): 383–91. doi:10.1016/0003-9861(88)90303-7. PMID2969697.
In addition to the expressed gene at this chromosomal locus (11q22), there are pseudogenes located on chromosomes 20 and 21.
Function
Adrenodoxin is a small iron-sulfur protein that can accept and carry a single electron. Adrenodoxin functions as an electron transfer protein in the mitochondrial cytochrome P450 systems.
This particular oxidation/reduction system is involved in the synthesis of steroid hormones in steroidogenic tissues. In addition, similar systems also function in vitamin D and bile acid synthesis in the kidney and liver respectively. Adrenodoxin has been identified in a number of different tissues but all forms have been shown to be identical and are not tissue specific.
Adrenodoxin reductase (Enzyme Nomenclature name: adrenodoxin-NADP+ reductase, EC 1.18.1.6), was first isolated from bovine adrenal cortex where it functions as the first enzyme in the mitochondrial P450 systems that catalyze essential steps in steroid hormone biosynthesis.
Omura T, Sanders E, Estabrook RW, Cooper DY, Rosenthal O (December 1966). “Isolation from adrenal cortex of a nonheme iron protein and a flavoprotein functional as a reduced triphosphopyridine nucleotide-cytochrome P-450 reductase”. Archives of Biochemistry and Biophysics. 117 (3): 660–673. doi:10.1016/0003-9861(66)90108-1.
The name of the enzyme was coined based on its function to reduce a [2Fe-2S] (2 iron, 2 sulfur) electron-transfer protein that was named adrenodoxin. Later, in some studies, the enzyme was also referred to as a “ferredoxin reductase”, as adrenodoxin is a ferredoxin. In the human gene nomenclature, the standard name is ferredoxin reductase and the symbol is FDXR, with ADXR specified as a synonym.
The assignment of the name “ferredoxin reductase” has been criticized as a misnomer because determination of the structure of adrenodoxin reductase revealed that it is completely different from that of plant ferredoxin reductase and there is no homology between these two enzymes.
Ziegler GA, Vonrhein C, Hanukoglu I, Schulz GE (Jun 1999). “The structure of adrenodoxin reductase of mitochondrial P450 systems: electron transfer for steroid biosynthesis”. Journal of Molecular Biology. 289 (4): 981–90. doi:10.1006/jmbi.1999.2807. PMID10369776.
Ziegler GA, Schulz GE (2000). “Crystal structures of adrenodoxin reductase in complex with NADP+ and NADPH suggesting a mechanism for the electron transfer of an enzyme family”. Biochemistry. 39 (36): 10986–95. doi:10.1021/bi000079k. PMID10998235.
With more proteins with a ferroxodin-reducing activity discovered in both families as well as novel families, this enzyme activity is now seen as an example of convergent evolution.
Aliverti A, Pandini V, Pennati A, de Rosa M, Zanetti G (June 2008). “Structural and functional diversity of ferredoxin-NADP(+) reductases”. Archives of Biochemistry and Biophysics. 474 (2): 283–91. doi:10.1016/j.abb.2008.02.014. hdl:2434/41439. PMID18307973.
Adrenodoxin reductase is a flavoprotein as it carries a FAD type coenzyme. The enzyme functions as the first electron transfer protein of mitochondrial P450 systems such as P450scc.
ADXR gene is expressed in all tissues that have mitochondrial P450s. The highest levels of the enzyme are found in the adrenal cortex, granulosa cells of the ovary and leydig cells of the testis that specialize in steroid hormone synthesis.
While the FAD-binding site has a consensus sequence (Gly-x-Gly-x-x-Gly) that is similar to other Rossmann folds in FAD and NAD binding sites, the NADPH binding site consensus sequence differs from the FAD-binding site by the substitution of an alanine instead of the last Gly (Gly-x-Gly-x-x-Ala).
The location of these FAD and NADP binding sites were confirmed by the crystal structure of the enzyme.
Ziegler GA, Schulz GE (2000). “Crystal structures of adrenodoxin reductase in complex with NADP+ and NADPH suggesting a mechanism for the electron transfer of an enzyme family”. Biochemistry. 39 (36): 10986–95. doi:10.1021/bi000079k. PMID10998235.
“Human PubMed Reference:”. National Center for Biotechnology Information, U.S. National Library of Medicine.
“Mouse PubMed Reference:”. National Center for Biotechnology Information, U.S. National Library of Medicine.
Omura T, Sanders E, Estabrook RW, Cooper DY, Rosenthal O (December 1966). “Isolation from adrenal cortex of a nonheme iron protein and a flavoprotein functional as a reduced triphosphopyridine nucleotide-cytochrome P-450 reductase”. Archives of Biochemistry and Biophysics. 117 (3): 660–673. doi:10.1016/0003-9861(66)90108-1.
Ziegler GA, Vonrhein C, Hanukoglu I, Schulz GE (Jun 1999). “The structure of adrenodoxin reductase of mitochondrial P450 systems: electron transfer for steroid biosynthesis”. Journal of Molecular Biology. 289 (4): 981–90. doi:10.1006/jmbi.1999.2807. PMID10369776.
Ziegler GA, Schulz GE (2000). “Crystal structures of adrenodoxin reductase in complex with NADP+ and NADPH suggesting a mechanism for the electron transfer of an enzyme family”. Biochemistry. 39 (36): 10986–95. doi:10.1021/bi000079k. PMID10998235.
Aliverti A, Pandini V, Pennati A, de Rosa M, Zanetti G (June 2008). “Structural and functional diversity of ferredoxin-NADP(+) reductases”. Archives of Biochemistry and Biophysics. 474 (2): 283–91. doi:10.1016/j.abb.2008.02.014. hdl:2434/41439. PMID18307973.
Sparkes RS, Klisak I, Miller WL (1991). “Regional mapping of genes encoding human steroidogenic enzymes: P450scc to 15q23-q24, adrenodoxin to 11q22; adrenodoxin reductase to 17q24-q25; and P450c17 to 10q24-q25”. DNA Cell Biol. 10 (5): 359–65. doi:10.1089/dna.1991.10.359. PMID1863359.
Skjeldal L, Markley JL, Coghlan VM, Vickery LE (1991). “1H NMR spectra of vertebrate [2Fe-2S] ferredoxins. Hyperfine resonances suggest different electron delocalization patterns from plant ferredoxins”. Biochemistry. 30 (37): 9078–83. doi:10.1021/bi00101a024. PMID1909889.
Chang CY, Wu DA, Mohandas TK, Chung BC (1990). “Structure, sequence, chromosomal location, and evolution of the human ferredoxin gene family”. DNA Cell Biol. 9 (3): 205–12. doi:10.1089/dna.1990.9.205. PMID2340092.
Chang CY, Wu DA, Lai CC, et al. (1989). “Cloning and structure of the human adrenodoxin gene”. DNA. 7 (9): 609–15. doi:10.1089/dna.1988.7.609. PMID3229285.
Voutilainen R, Picado-Leonard J, DiBlasio AM, Miller WL (1988). “Hormonal and developmental regulation of adrenodoxin messenger ribonucleic acid in steroidogenic tissues”. J. Clin. Endocrinol. Metab. 66 (2): 383–8. doi:10.1210/jcem-66-2-383. PMID3339111.
Martsev SP, Chashchin VL, Akhrem AA [in Belarusian] (1985). “[Reconstruction and study of a multi-enzyme system by 11 beta-hydroxylase steroids]”. Biokhimiia. 50 (2): 243–57. PMID3872685.
Johnson D, Norman S, Tuckey RC, Martin LL (2004). “Electrochemical behaviour of human adrenodoxin on a pyrolytic graphite electrode”. Bioelectrochemistry. 59 (1–2): 41–7. doi:10.1016/s1567-5394(02)00188-3. PMID12699818.
Araya Z, Hosseinpour F, Bodin K, Wikvall K (2003). “Metabolism of 25-hydroxyvitamin D3 by microsomal and mitochondrial vitamin D3 25-hydroxylases (CYP2D25 and CYP27A1): a novel reaction by CYP27A1”. Biochim. Biophys. Acta. 1632 (1–3): 40–7. doi:10.1016/S1388-1981(03)00062-3. PMID12782149.
Derouet-Hümbert E, Roemer K, Bureik M (2005). “Adrenodoxin (Adx) and CYP11A1 (P450scc) induce apoptosis by the generation of reactive oxygen species in mitochondria”. Biol. Chem. 386 (5): 453–61. doi:10.1515/BC.2005.054. PMID15927889. S2CID37533711.
Adrenodoxin reductase
Sparkes RS, Klisak I, Miller WL (Jun 1991). “Regional mapping of genes encoding human steroidogenic enzymes: P450scc to 15q23-q24, adrenodoxin to 11q22; adrenodoxin reductase to 17q24-q25; and P450c17 to 10q24-q25”. DNA and Cell Biology. 10 (5): 359–65. doi:10.1089/dna.1991.10.359. PMID1863359.
Usanov SA, Chernogolov AA, Honkakoski P, Lang M, Passanen M, Raunio H, Pelkonen O (May 1990). “[Cholesterol-hydroxylating cytochrome P-450 from bovine adrenal cortex mitochondria and human placenta: immunochemical properties and structural characteristics]”. Biokhimiya. 55 (5): 865–77. PMID2393675.
Sasano H, Sasano N, Okamoto M, Nonaka Y (May 1989). “Immunohistochemical demonstration of adrenodoxin reductase in bovine and human adrenals”. Pathology, Research and Practice. 184 (5): 473–9. doi:10.1016/s0344-0338(89)80137-2. PMID2748461.
Usanov SA, Honkakoski P, Lang MA, Pasanen M, Pelkonen O, Raunio H (Oct 1989). “Comparison of the immunochemical properties of human placental and bovine adrenal cholesterol side-chain cleavage enzyme complex”. Biochimica et Biophysica Acta (BBA) – Protein Structure and Molecular Enzymology. 998 (2): 189–95. doi:10.1016/0167-4838(89)90272-0. PMID2790061.
Maruyama K, Sugano S (Jan 1994). “Oligo-capping: a simple method to replace the cap structure of eukaryotic mRNAs with oligoribonucleotides”. Gene. 138 (1–2): 171–4. doi:10.1016/0378-1119(94)90802-8. PMID8125298.
Suzuki Y, Yoshitomo-Nakagawa K, Maruyama K, Suyama A, Sugano S (Oct 1997). “Construction and characterization of a full length-enriched and a 5′-end-enriched cDNA library”. Gene. 200 (1–2): 149–56. doi:10.1016/S0378-1119(97)00411-3. PMID9373149.
Araya Z, Hosseinpour F, Bodin K, Wikvall K (Jun 2003). “Metabolism of 25-hydroxyvitamin D3 by microsomal and mitochondrial vitamin D3 25-hydroxylases (CYP2D25 and CYP27A1): a novel reaction by CYP27A1”. Biochimica et Biophysica Acta (BBA) – Molecular and Cell Biology of Lipids. 1632 (1–3): 40–7. doi:10.1016/S1388-1981(03)00062-3. PMID12782149.