k

NLR family pyrin domain containing 3 (NLRP3) (previously known as NACHT, LRR and PYD domains-containing protein 3 [NALP3] and cryopyrin)

Reference for subtitle: Finamor IA, Bressan CA, Torres-Cuevas I, Rius-Pérez S, da Veiga M, Rocha MI, Pavanato MA, Pérez S. Long-Term Aspartame Administration Leads to Fibrosis, Inflammasome Activation, and Gluconeogenesis Impairment in the Liver of Mice. Biology. 2021; 10(2):82. https://doi.org/10.3390/biology10020082

NLR family pyrin domain containing 3 (NLRP3) (previously known as NACHT, LRR and PYD domains-containing protein 3 [NALP3] and cryopyrin), is a protein that in humans is encoded by the NLRP3 gene located on the long arm of chromosome 1.

NLRP3 is expressed predominantly in macrophages and as a component of the inflammasome, detects products of damaged cells such as extracellular ATP and crystalline uric acid. Activated NLRP3 in turn triggers an immune response. Mutations in the NLRP3 gene are associated with a number of organ specific autoimmune diseases.

Nomenclature

NACHT, LRR, and PYD are respectively acronyms for:

  • NACHT – NAIP (neuronal apoptosis inhibitor protein), C2TA [class 2 transcription activator, of the MHC, HET-E (heterokaryon incompatibility) and TP1 (telomerase-associated protein 1)
  • LRR – “leucine-rich repeat” and is synonymous with NLR, for or nucleotide-binding domain, leucine-rich repeat”
  • PYD – “PYRIN domain,” after the pyrin proteins The NLRP3 gene name abbreviates “NLR family, pyrin domain containing 3,” where NLR refers to “nucleotide-binding domain, leucine-rich repeat.”

The NACHT, LRR and PYD domains-containing protein 3 is also called:

  • cold induced autoinflammatory syndrome 1 (CIAS1),
  • caterpiller-like receptor 1.1 (CLR1.1), and
  • PYRIN-containing APAF1-like protein 1 (PYPAF1).

Structure

This gene encodes a pyrin-like protein which contains a pyrin domain, a nucleotide-binding site (NBS) domain, and a leucine-rich repeat (LRR) motif. This protein interacts with pyrin domain (PYD) of apoptosis-associated speck-like protein containing a CARD (ASC). Proteins which contain the caspase recruitment domain, CARD, have been shown to be involved in inflammation and immune response.

Function

NLRP3 is a component of the innate immune system that functions as a pattern recognition receptor (PRR) that recognizes pathogen-associated molecular patterns (PAMPs). NLRP3 belongs to the NOD-like receptor (NLR) subfamily of PRRs and NLRP3 together with the adaptor ASC protein PYCARD forms a caspase-1 activating complex known as the NLRP3 inflammasome. NLRP3 in the absence of activating signal is kept in an inactive state complexed with HSP90 and SGT1 in the cytoplasm. NLRP3 inflammasome detects danger signals such as crystalline uric acid and extracellular ATP released by damaged cells. These signals release HSP90 and SGT1 from and recruit ASC protein and caspase-1 to the inflammasome complex. Caspase-1 within the activated NLRP3 inflammasome complex in turn activates the inflammatory cytokine, IL-1β.

The NLRP3 inflammasome appears to be activated by changes in intracellular potassium caused by potassium efflux from mechanosensitive ion channels located in the cell membrane. It appears that NLRP3 is also regulated by reactive oxygen species (ROS), though the precise mechanisms of such regulation has not been determined.

It is suggested that NLRP3 provides protection against Streptococcus pneumoniae infections by activating STAT6 and SPDEF.

Pathology

Mutations in the NLRP3 gene have been associated with a spectrum of dominantly inherited autoinflammatory diseases called cryopyrin-associated periodic syndrome (CAPS). This includes familial cold autoinflammatory syndrome (FCAS), Muckle–Wells syndrome (MWS), chronic infantile neurological cutaneous and articular (CINCA) syndrome, neonatal onset multisystem inflammatory disease (NOMID), and keratoendotheliitis fugax hereditaria.

Defects in this gene have also been linked to familial Mediterranean fever. In addition, the NLRP3 inflammasome has a role in the pathogenesis of gout, hemorrhagic stroke and neuroinflammation occurring in protein-misfolding diseases, such as Alzheimer’sParkinson’s, and prion diseases. Amelioration of mouse models of many diseases has been shown to occur by deletion of the NLRP3 inflammasome, including gouttype 2 diabetesmultiple sclerosisAlzheimer’s disease, and atherosclerosis. The compound β-Hydroxybutyrate has been shown to block NLRP3 activation, and thus may be of benefit for many of these diseases.

Deregulation of NLRP3 has been connected with carcinogenesis. For example, all the components of the NLRP3 inflammasome are downregulated or completely lost in human hepatocellular carcinoma.

Inhibition

The NLRP3 inflammasome has garnered attention as a potential drug target for a variety of diseases underpinned by inflammation. The diarylsulfonylurea MCC-950 has been identified as a potent and selective NLRP3 inhibitor. Nodthera and Inflazome, have entered phase I clinical trials with NLRP3 inhibitors. Another NLRP3 antagonist is Dapansutrile (OLT1177). This β-sulfonyl nitrile molecule compound was developed by Olactec Therapeutics, and is a selective NLRP3 inhibitor. Dapansutrile, been used in clinical trials as a remedy for heart failure, osteoarthritis and gouty arthritis.

References and notes

  1. GRCh38: Ensembl release 89: ENSG00000162711 – Ensembl, May 2017
  2. GRCm38: Ensembl release 89: ENSMUSG00000032691 – Ensembl, May 2017
  3. “Human PubMed Reference:”National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. “Mouse PubMed Reference:”National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. Anon. (2015). “Entrez Gene: NLRP3 NLR family, pyrin domain containing 3 [Homo sapiens (human)], Gene ID: 114548 (updated on 13-Nov-2015)”. Bethesda, MD, USA: National Center for Biotechnology Information, National Library of Medicine. Retrieved 13 November 2015.
  6. Hoffman HM, Wright FA, Broide DH, Wanderer AA, Kolodner RD (May 2000). “Identification of a locus on chromosome 1q44 for familial cold urticaria”American Journal of Human Genetics66 (5): 1693–8. doi:10.1086/302874PMC 1378006PMID 10741953.
  7. Tao JH, Zhang Y, Li XP (Dec 2013). “P2X7R: a potential key regulator of acute gouty arthritis”. review. Seminars in Arthritis and Rheumatism43 (3): 376–80. doi:10.1016/j.semarthrit.2013.04.007PMID 23786870.
  8. Lu A, Wu H (Feb 2015). “Structural mechanisms of inflammasome assembly”. review. The FEBS Journal282 (3): 435–44. doi:10.1111/febs.13133PMC 6400279PMID 25354325.
  9. Koonin EV, Aravind L (May 2000). “The NACHT family – a new group of predicted NTPases implicated in apoptosis and MHC transcription activation”. Trends in Biochemical Sciences25 (5): 223–4. doi:10.1016/S0968-0004(00)01577-2PMID 10782090.
  10. Pueyo I, Jiménez JR, Hernández J, Brugarolas A, García-Morán M, García-Muñiz JL, Arroyo F (Sep 1978). “Carcinoid syndrome treated by hepatic embolization”AJR. American Journal of Roentgenology131 (3): 511–3. doi:10.2214/ajr.131.3.511PMID 99001.
  11. Jha S, Ting JP (Dec 2009). “Inflammasome-associated nucleotide-binding domain, leucine-rich repeat proteins and inflammatory diseases”Journal of Immunology183 (12): 7623–9. doi:10.4049/jimmunol.0902425PMC 3666034PMID 20007570.
  12. Bertin J, DiStefano PS (Dec 2000). “The PYRIN domain: a novel motif found in apoptosis and inflammation proteins”. review. Cell Death and Differentiation7 (12): 1273–4. doi:10.1038/sj.cdd.4400774PMID 11270363.
  13. Q96P20
  14. Martinon F (Mar 2008). “Detection of immune danger signals by NALP3”. review. Journal of Leukocyte Biology83 (3): 507–11. doi:10.1189/jlb.0607362PMID 17982111.
  15. Hari A, Zhang Y, Tu Z, Detampel P, Stenner M, Ganguly A, Shi Y (2014). “Activation of NLRP3 inflammasome by crystalline structures via cell surface contact”Scientific Reports4: 7281. Bibcode:2014NatSR…4E7281Hdoi:10.1038/srep07281PMC 4250918PMID 25445147
  16. Haneklaus M, O’Neill LA, Coll RC (Feb 2013). “Modulatory mechanisms controlling the NLRP3 inflammasome in inflammation: recent developments”. review. Current Opinion in Immunology25 (1): 40–45. doi:10.1016/j.coi.2012.12.004hdl:2262/72554PMID 23305783.
  17. Fang R, Uchiyama R, Sakai S, Hara H, Tsutsui H, Suda T, et al. (September 2019). “ASC and NLRP3 maintain innate immune homeostasis in the airway through an inflammasome-independent mechanism”Mucosal Immunology12 (5): 1092–1103. doi:10.1038/s41385-019-0181-1PMID 31278375.
  18. Turunen JA, Wedenoja J, Repo P, Järvinen RS, Jäntti JE, Mörtenhumer S, Riikonen AS, Lehesjoki AE, Majander A, Kivelä TT (Jan 2018). “Keratoendotheliitis Fugax Hereditaria: A Novel Cryopyrin-Associated Periodic Syndrome Caused by a Mutation in the Nucleotide-Binding Domain, Leucine-Rich Repeat Family, Pyrin Domain-Containing 3 (NLRP3) Gene”American Journal of Ophthalmology184: 41–50. doi:10.1016/j.ajo.2018.01.017PMID 29366613.
  19. Church LD, Cook GP, McDermott MF (Jan 2008). “Primer: inflammasomes and interleukin 1beta in inflammatory disorders”. review. Nature Clinical Practice Rheumatology4 (1): 34–42. doi:10.1038/ncprheum0681PMID 18172447S2CID 19986204.
  20. Ren H, Han R, Chen X, Liu X, Wan J, Wang L, Yang X, Wang J (May 2020). “Potential therapeutic targets for intracerebral hemorrhage-associated inflammation: An update”J Cereb Blood Flow Metab40 (9): 1752–1768. doi:10.1177/0271678X20923551PMC 7446569PMID 32423330.
  21. Liu-Bryan R (Jan 2010). “Intracellular innate immunity in gouty arthritis: role of NALP3 inflammasome”. review. Immunology and Cell Biology88 (1): 20–3. doi:10.1038/icb.2009.93PMC 4337950PMID 19935768.
  22. Heneka MT, Kummer MP, Stutz A, Delekate A, Schwartz S, Vieira-Saecker A, Griep A, Axt D, Remus A, Tzeng TC, Gelpi E, Halle A, Korte M, Latz E, Golenbock DT (Jan 2013). “NLRP3 is activated in Alzheimer’s disease and contributes to pathology in APP/PS1 mice”Nature493 (7434): 674–8. Bibcode:2013Natur.493..674Hdoi:10.1038/nature11729PMC 3812809PMID 23254930.
  23. Shi F, Kouadir M, Yang Y (Aug 2015). “NALP3 inflammasome activation in protein misfolding diseases”. review. Life Sciences135: 9–14. doi:10.1016/j.lfs.2015.05.011PMID 26037399.
  24. Levy M, Thaiss CA, Elinav E (2015). “Taming the inflammasome” (PDF). Nature Medicine21 (3): 213–215. doi:10.1038/nm.3808PMID 25742454S2CID 6659540.
  25. Youm YH, Nguyen KY, Grant RW, Goldberg EL, Bodogai M, Kim D, D’Agostino D, Planavsky N, Lupfer C, Kanneganti TD, Kang S, Horvath TL, Fahmy TM, Crawford PA, Biragyn A, Alnemri E, Dixit VD (2015). “The ketone metabolite β-hydroxybutyrate blocks NLRP3 inflammasome-mediated inflammatory disease”Nature Medicine21 (3): 263–269. doi:10.1038/nm.3804PMC 4352123PMID 25686106.
  26. Wei Q, Mu K, Li T, Zhang Y, Yang Z, Jia X, Zhao W, Huai W, Guo P, Han L (Jan 2014). “Deregulation of the NLRP3 inflammasome in hepatic parenchymal cells during liver cancer progression”Laboratory Investigation94 (1): 52–62. doi:10.1038/labinvest.2013.126PMID 24166187.
  27. Coll RC, Robertson AA, Chae JJ, Higgins SC, Muñoz-Planillo R, Inserra MC, et al. (March 2015). “A small-molecule inhibitor of the NLRP3 inflammasome for the treatment of inflammatory diseases”Nature Medicine21 (3): 248–55. doi:10.1038/nm.3806PMC 4392179PMID 25686105.
  28. Alzheimer’s Drug Discovery Foundation., Dapansutrile. “Dapansutrile” (PDF).

External links

  • Overview of all the structural information available in the PDB for UniProtQ96P20 (NACHT, LRR and PYD domains-containing protein 3) at the PDBe-KB.
NOD-like receptor family

Categories

Post a Comment

Your email address will not be published. Required fields are marked *