Von Willebrand factor (VWF) is a large multimeric glycoprotein present in blood plasma and produced constitutively as ultra-large VWF in endothelium (in the Weibel–Palade bodies), megakaryocytes (α-granules of platelets), and subendothelial connective tissue

Von Willebrand factor (VWF) is a blood glycoprotein that promotes hemostasis, specifically, platelet adhesion. It is deficient and/or defective in von Willebrand disease and is involved in many other diseases, including thrombotic thrombocytopenic purpuraHeyde’s syndrome, and possibly hemolytic–uremic syndrome. Increased plasma levels in many cardiovascular, neoplastic, metabolic (e.g. diabetes), and connective tissue diseases are presumed to arise from adverse changes to the endothelium, and may predict an increased risk of thrombosis.

Biochemistry

Synthesis

VWF is a large multimeric glycoprotein present in blood plasma and produced constitutively as ultra-large VWF in endothelium (in the Weibel–Palade bodies), megakaryocytes (α-granules of platelets), and subendothelial connective tissue.

Structure

The basic VWF monomer is a 2050-amino acid protein. Every monomer contains a number of specific domains with a specific function; elements of note are:

Monomers are subsequently N-glycosylated, arranged into dimers in the endoplasmic reticulum and into multimers in the Golgi apparatus by crosslinking of cysteine residues via disulfide bonds. With respect to the glycosylation, VWF is one of only a few proteins that carry ABO blood group system antigens. VWFs coming out of the Golgi are packaged into storage organelles, Weibel-Palade bodies (WPBs) in endothelial cells and α-granules in platelets.

Multimers of VWF can be extremely large, >20,000 kDa, and consist of over 80 subunits of 250 kDa each. Only the large multimers are functional. Some cleavage products that result from VWF production are also secreted but probably serve no function.

VWF monomer and multimers.

Function

The interaction of VWF and GP1b alpha. The GP1b receptor on the surface of platelets allows the platelet to bind to VWF, which is exposed upon damage to vasculature. The VWF A1 domain (yellow) interacts with the extracellular domain of GP1ba (blue).

Von Willebrand Factor’s primary function is binding to other proteins, in particular factor VIII, and it is important in platelet adhesion to wound sites. It is not an enzyme and, thus, has no catalytic activity.

VWF binds to a number of cells and molecules. The most important ones are:

VWF plays a major role in blood coagulation. Therefore, VWF deficiency or dysfunction (von Willebrand disease) leads to a bleeding tendency, which is most apparent in tissues having high blood flow shear in narrow vessels. From studies it appears that VWF uncoils under these circumstances, decelerating passing platelets. Recent research also suggests that von Willebrand Factor is involved in the formation of blood vessels themselves, which would explain why some people with von Willebrand disease develop vascular malformations (predominantly in the digestive tract) that can bleed excessively.

Catabolism

The biological breakdown (catabolism) of VWF is largely mediated by the enzyme ADAMTS13 (acronym of “a disintegrin-like and metalloprotease with thrombospondin type 1 motif no. 13“). It is a metalloproteinase that cleaves VWF between tyrosine at position 842 and methionine at position 843 (or 1605–1606 of the gene) in the A2 domain. This breaks down the multimers into smaller units, which are degraded by other peptidases.

The half-life of vWF in human plasma is around 16 hours; glycosylation variation on vWF molecules from different individuals result in a larger range of 4.2 to 26 hours. Liver cells as well as macrophages take up vWF for clearance via ASGPRs and LRP1SIGLEC5 and CLEC4M also recognize vWF.

Role in disease

Main article: von Willebrand disease

Hereditary or acquired defects of VWF lead to von Willebrand disease (vWD), a bleeding diathesis of the skin and mucous membranes, causing nosebleedsmenorrhagia, and gastrointestinal bleeding. The point at which the mutation occurs determines the severity of the bleeding diathesis. There are three types (I, II and III), and type II is further divided in several subtypes. Treatment depends on the nature of the abnormality and the severity of the symptoms. Most cases of vWD are hereditary, but abnormalities of VWF may be acquired; aortic valve stenosis, for instance, has been linked to vWD type IIA, causing gastrointestinal bleeding – an association known as Heyde’s syndrome.

In thrombotic thrombocytopenic purpura (TTP) and hemolytic–uremic syndrome (HUS), ADAMTS13 either is deficient or has been inhibited by antibodies directed at the enzyme. This leads to decreased breakdown of the ultra-large multimers of VWF and microangiopathic hemolytic anemia with deposition of fibrin and platelets in small vessels, and capillary necrosis. In TTP, the organ most obviously affected is the brain; in HUS, the kidney.

Higher levels of VWF are more common among people that have had ischemic stroke (from blood-clotting) for the first time. Occurrence is not affected by ADAMTS13, and the only significant genetic factor is the person’s blood group. High plasma VWF levels were found to be an independent predictor of major bleeding in anticoagulated atrial fibrillation patients.

History

See also: Erik Adolf von Willebrand § Von Willebrand disease

VWF is named after Erik Adolf von Willebrand, a Finnish physician who in 1926 first described a hereditary bleeding disorder in families from Åland. Although von Willebrand did not identify the definite cause, he distinguished von Willebrand disease (vWD) from hemophilia and other forms of bleeding diathesis.

  • von Willebrand EA (1926). “Hereditär pseudohemofili” [Hereditary pseudo haemophilia]. Fin Läkaresällsk Handl (in Swedish). 68: 87–112. Reproduced in Von Willebrand EA (May 1999). “Hereditary pseudohaemophilia”. Haemophilia5 (3): 223–31, discussion 222. doi:10.1046/j.1365-2516.1999.00302.xPMID 10444294S2CID 221750622.

In the 1950s, vWD was shown to be caused by a plasma factor deficiency (instead of being caused by platelet disorders), and, in the 1970s, the VWF protein was purified. Harvey J. Weiss and coworkers developed a quantitative assay for VWF function that remains a mainstay of laboratory evaluation for VWD to this day.

Interactions

Von Willebrand Factor has been shown to interact with Collagen, type I, alpha 1.

Collagen, type I, alpha 1, also known as alpha-1 type I collagen, is a protein that in humans is encoded by the COL1A1 gene. COL1A1 encodes the major component of type I collagen, the fibrillar collagen found in most connective tissues, including cartilage.

Function

Collagen is a protein that strengthens and supports many tissues in the body, including cartilagebonetendonskin and the white part of the eye (sclera). The COL1A1 gene produces a component of type I collagen, called the pro-alpha1(I) chain. This chain combines with another pro-alpha1(I) chain and also with a pro-alpha2(I) chain (produced by the COL1A2 gene) to make a molecule of type I procollagen. These triple-stranded, rope-like procollagen molecules must be processed by enzymes outside the cell. Once these molecules are processed, they arrange themselves into long, thin fibrils that cross-link to one another in the spaces around cells. The cross-links result in the formation of very strong mature type I collagen fibers. Collagenous function includes rigidity and elasticity.

Gene

The COL1A1 gene is located on the long (q) arm of chromosome 17 between positions 21.3 and 22.1, from base pair 50183289 to base pair 50201632.

Clinical significance

Mutations in the COL1A1 gene are associated with the following conditions:

  • Ehlers–Danlos syndrome, vascular type: In rare cases, specific heterozygous arginine-to-cysteine substitution mutations in COL1A1 that are also associated with vascular fragility and mimic COL3A1-vEDS
  • Ehlers–Danlos syndrome, arthrochalasia type: It is caused by mutations in the COL1A1 gene. The mutations in the COL1A1 gene that cause this disorder instruct the cell to leave out a part of the pro-alpha1(I) chain that contains a segment used to attach one molecule to another. When this part of the protein is missing, the structure of type I collagen is compromised. Tissues that are rich in type I collagen, such as the skin, bones, and tendons, are affected by this change. Ehlers–Danlos type IV is most attributed to abnormalities in the reticular fibers (collagen Type III).
  • Ehlers–Danlos syndrome, classical type: In rare cases, a mutation in the COL1A1 gene has been shown to cause the classical type of Ehlers–Danlos syndrome. This mutation substitutes the amino acid cysteine for the amino acid arginine at position 134 in the protein made by the gene. (The mutation can also be written as Arg134Cys.) The altered protein interacts abnormally with other collagen-building proteins, disrupting the structure of type I collagen fibrils and trapping collagen in the cell. Researchers believe that these changes in collagen cause the signs and symptoms of the disorder. Ehlers–Danlos type IV is most attributed to abnormalities in the reticular fibers (collagen Type III). Without the hydroxylation of lysine, by the enzyme lysyl hydroxylase, the final collagen structure cannot form.
  • Osteogenesis imperfecta, type I: Osteogenesis imperfecta is the most common disorder caused by mutations in this gene. Mutations that inactivate one of the two copies of the COL1A1 gene cause osteogenesis imperfecta type I. The mutated copy of the gene does not produce any pro-alpha1(I) collagen chains. Because only one copy of the gene is directing the cell to make pro-alpha1(I) chains, cells from people with this disorder make only half of the normal amount of type I collagen, which results in bone fragility and other symptoms.
  • Osteogenesis imperfecta, type II: Many different types of mutations in the COL1A1 gene can cause osteogenesis imperfecta type II. These mutations range from missing pieces of the COL1A1 gene to amino acid substitutions, in which the amino acid glycine is replaced by another amino acid in the protein strand. Sometimes one end of the gene (called the C-terminus) is altered, which interferes with the association of the protein strands. All of these changes prevent the normal production of mature type I collagen, which results in this severe condition, type II osteogenesis imperfecta.
  • Osteogenesis imperfecta, type III: Mutations in the COL1A1 gene may result in the production of a protein that is missing segments, making it unusable for collagen production. Other mutations cause the amino acid glycine to be replaced by a different amino acid in the pro-alpha1(I) chain, which inhibits the essential interaction between protein chains. Type I collagen production is inhibited by the inability of the altered procollagen strands to associate and form the triple-stranded, ropelike structure of mature collagen. These alterations negatively affect tissues that are rich in type I collagen, such as the skin, bones, teeth, and tendons, leading to the signs and symptoms of type III osteogenesis imperfecta.
  • Osteogenesis imperfecta, type IV: Several different types of mutations in the COL1A1 gene cause osteogenesis imperfecta type IV. These mutations may involve missing pieces of the COL1A1 gene or changes in base pairs (the building blocks of DNA). These gene alterations result in a protein that is missing segments or has amino acid substitutions; specifically, the amino acid glycine is replaced by another amino acid. All of these changes interfere with the formation of the mature triple-stranded collagen molecule and prevent the production of mature type I collagen, which results in type IV osteogenesis imperfecta.
  • Osteoporosis: Osteoporosis is a condition that makes bones progressively more brittle and prone to fracturing. A particular variation (polymorphism) in the COL1A1 gene appears to increase the risk of developing osteoporosis. A specific variation at Sp1 binding site is shown to be associated with increased risk of low bone mass and vertebral fracture, because of the changes the COL1A1 protein produced from one copy of the gene. Several studies have shown that women with this particular genetic variation at Sp1 site are more likely to have signs of osteoporosis than are women without the variation.
  • Predisposition to hernias.
  • Predisposition to degenerative disc disease, and disc herniation.

External links

Category

Recently, It has been reported that the cooperation and interactions within the von Willebrand Factors enhances the adsorption probability in the primary haemostasis. Such cooperation is proven by calculating the adsorption probability of flowing VWF once it crosses another adsorbed one. Such cooperation is held within a wide range of shear rates.

See also

References

  1. GRCh38: Ensembl release 89: ENSG00000110799 – Ensembl, May 2017
  2. GRCm38: Ensembl release 89: ENSMUSG00000001930 – Ensembl, May 2017
  3. “Human PubMed Reference:”National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. “Mouse PubMed Reference:”National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. Sadler JE (1998). “Biochemistry and genetics of von Willebrand factor”Annual Review of Biochemistry67: 395–424. doi:10.1146/annurev.biochem.67.1.395PMID 9759493.
  6. Shahidi M (2017). “Thrombosis and von Willebrand Factor”. Thrombosis and Embolism: From Research to Clinical Practice. Advances in Experimental Medicine and Biology. Vol. 906. pp. 285–306. doi:10.1007/5584_2016_122ISBN 978-3-319-22107-6PMID 27628010.
  7. Zhou YF, Eng ET, Zhu J, Lu C, Walz T, Springer TA (July 2012). “Sequence and structure relationships within von Willebrand factor”Blood120 (2): 449–458. doi:10.1182/blood-2012-01-405134PMC 3398765PMID 22490677.
  8. Jakobi AJ, Mashaghi A, Tans SJ, Huizinga EG (July 2011). “Calcium modulates force sensing by the von Willebrand factor A2 domain”Nature Communications2: 385. Bibcode:2011NatCo…2..385Jdoi:10.1038/ncomms1385PMC 3144584PMID 21750539.
  9. Luken BM, Winn LY, Emsley J, Lane DA, Crawley JT (June 2010). “The importance of vicinal cysteines, C1669 and C1670, for von Willebrand factor A2 domain function”Blood115 (23): 4910–4913. doi:10.1182/blood-2009-12-257949PMC 2890177PMID 20354169.
  10. Lenting PJ, Christophe OD, Denis CV (March 2015). “von Willebrand factor biosynthesis, secretion, and clearance: connecting the far ends”Blood125 (13): 2019–2028. doi:10.1182/blood-2014-06-528406PMID 25712991S2CID 27785232.
  11. Randi AM, Laffan MA (January 2017). “Von Willebrand factor and angiogenesis: basic and applied issues”Journal of Thrombosis and Haemostasis15 (1): 13–20. doi:10.1111/jth.13551hdl:10044/1/42796PMID 27778439S2CID 3490036.
  12. Levy GG, Motto DG, Ginsburg D (July 2005). “ADAMTS13 turns 3”Blood106 (1): 11–17. doi:10.1182/blood-2004-10-4097PMID 15774620S2CID 25645477.
  13. Sadler JE, Budde U, Eikenboom JC, Favaloro EJ, Hill FG, Holmberg L, et al. (October 2006). “Update on the pathophysiology and classification of von Willebrand disease: a report of the Subcommittee on von Willebrand Factor”. Journal of Thrombosis and Haemostasis4 (10): 2103–2114. doi:10.1111/j.1538-7836.2006.02146.xPMID 16889557S2CID 23875096.
  14. Vincentelli A, Susen S, Le Tourneau T, Six I, Fabre O, Juthier F, et al. (July 2003). “Acquired von Willebrand syndrome in aortic stenosis”The New England Journal of Medicine349 (4): 343–349. doi:10.1056/NEJMoa022831PMID 12878741.
  15. Moake JL (January 2004). “von Willebrand factor, ADAMTS-13, and thrombotic thrombocytopenic purpura”. Seminars in Hematology41 (1): 4–14. doi:10.1053/j.seminhematol.2003.10.003PMID 14727254.
  16. Denorme F, De Meyer SF (September 2016). “The VWF-GPIb axis in ischaemic stroke: lessons from animal models”. Thrombosis and Haemostasis116 (4): 597–604. doi:10.1160/TH16-01-0036PMID 27029413S2CID 4964177.
  17. Roldán V, Marín F, Muiña B, Torregrosa JM, Hernández-Romero D, Valdés M, et al. (June 2011). “Plasma von Willebrand factor levels are an independent risk factor for adverse events including mortality and major bleeding in anticoagulated atrial fibrillation patients”Journal of the American College of Cardiology57 (25): 2496–2504. doi:10.1016/j.jacc.2010.12.033PMID 21497043.
  18. von Willebrand EA (1926). “Hereditär pseudohemofili” [Hereditary pseudo haemophilia]. Fin Läkaresällsk Handl (in Swedish). 68: 87–112. Reproduced in Von Willebrand EA (May 1999). “Hereditary pseudohaemophilia”. Haemophilia5 (3): 223–31, discussion 222. doi:10.1046/j.1365-2516.1999.00302.xPMID 10444294S2CID 221750622.
  19. Weiss HJ, Hoyer IW (December 1973). “Von Willebrand factor: dissociation from antihemophilic factor procoagulant activity”. Science182 (4117): 1149–1151. Bibcode:1973Sci…182.1149Wdoi:10.1126/science.182.4117.1149PMID 4127287S2CID 41340436.
  20. Weiss HJ, Rogers J, Brand H (November 1973). “Defective ristocetin-induced platelet aggregation in von Willebrand’s disease and its correction by factor VIII”The Journal of Clinical Investigation52 (11): 2697–2707. doi:10.1172/JCI107464PMC 302536PMID 4201262.
  21. Pareti FI, Fujimura Y, Dent JA, Holland LZ, Zimmerman TS, Ruggeri ZM (November 1986). “Isolation and characterization of a collagen binding domain in human von Willebrand factor”The Journal of Biological Chemistry261 (32): 15310–15315. doi:10.1016/S0021-9258(18)66869-3PMID 3490481.
  22. Heidari M, Mehrbod M, Ejtehadi MR, Mofrad MR (August 2015). “Cooperation within von Willebrand factors enhances adsorption mechanism”Journal of the Royal Society, Interface12 (109): 20150334. doi:10.1098/rsif.2015.0334PMC 4535404PMID 26179989.
  23. GRCh38: Ensembl release 89: ENSG00000108821 – Ensembl, May 2017
  24. GRCm38: Ensembl release 89: ENSMUSG00000001506 – Ensembl, May 2017
  25. “Human PubMed Reference:”National Center for Biotechnology Information, U.S. National Library of Medicine.
  26. “Mouse PubMed Reference:”National Center for Biotechnology Information, U.S. National Library of Medicine.
  27. Sezer S, Şimşek N, Celik HT, Erden G, Ozturk G, Düzgün AP, Çoşkun F, Demircan K (2014). “Association of collagen type I alpha 1 gene polymorphism with inguinal hernia – PubMed”Hernia: The Journal of Hernias and Abdominal Wall Surgery18 (4): 507–12. doi:10.1007/s10029-013-1147-yPMID 23925543S2CID 22999363.
  28. Kawaguchi Y (2018). “Genetic background of degenerative disc disease in the lumbar spine”Spine Surgery and Related Research2 (2): 98–112. doi:10.22603/ssrr.2017-0007PMC 6698496PMID 31440655.
  29. Bode AP, Read MS, Reddick RL (February 1999). “Activation and adherence of lyophilized human platelets on canine vessel strips in the Baumgartner perfusion chamber”. The Journal of Laboratory and Clinical Medicine133 (2): 200–211. doi:10.1016/S0022-2143(99)90013-6PMID 9989772.
  30. Hollenhorst MA, Tiemeyer KH, Mahoney KE, Aoki K, Ishihara M, Lowery SC, et al. (April 2023). “Comprehensive analysis of platelet glycoprotein Ibα ectodomain glycosylation”Journal of Thrombosis and Haemostasis21 (4): 995–1009. doi:10.1016/j.jtha.2023.01.009PMC 10065957PMID 36740532.
  31. McPherson RA, Pincus MR (2007). Henry’s Clinical Diagnosis and Management by Laboratory Methods (21st ed.). Philadelphia, Pa: Saunders Elsevier. pp. 760–762. ISBN 978-1-4160-0287-1.
  32. McMillan R (October 2007). “The pathogenesis of chronic immune thrombocytopenic purpura”. Seminars in Hematology44 (4 Suppl 5): S3–S11. doi:10.1053/j.seminhematol.2007.11.002PMID 18096470.
  33.  Li R, Emsley J (April 2013). “The organizing principle of the platelet glycoprotein Ib-IX-V complex”J. Thromb. Haemost11 (4): 605–14. doi:10.1111/jth.12144PMC 3696474PMID 23336709.
  34. McEwan PA, Andrews RK, Emsley J (November 2009). “Glycoprotein Ibalpha inhibitor complex structure reveals a combined steric and allosteric mechanism of von Willebrand factor antagonism”Blood114 (23): 4883–5. doi:10.1182/blood-2009-05-224170PMID 19726719.
  35. López JA, Andrews RK, Afshar-Kharghan V, Berndt MC (June 1998). “Bernard-Soulier syndrome”. Blood91 (12): 4397–418. doi:10.1182/blood.V91.12.4397PMID 9616133.
  36. Du X, Beutler L, Ruan C, Castaldi PA, Berndt MC (May 1987). “Glycoprotein Ib and glycoprotein IX are fully complexed in the intact platelet membrane”Blood69 (5): 1524–7. doi:10.1182/blood.V69.5.1524.1524PMID 2436691.
  37. Luo SZ, Mo X, Afshar-Kharghan V, Srinivasan S, López JA, Li R (January 2007). “Glycoprotein Ibalpha forms disulfide bonds with 2 glycoprotein Ibbeta subunits in the resting platelet”Blood109 (2): 603–9. doi:10.1182/blood-2006-05-024091PMC 1785083PMID 17008541.
  38. Mo X, Liu L, López JA, Li R (September 2012). “Transmembrane domains are critical to the interaction between platelet glycoprotein V and glycoprotein Ib-IX complex”J. Thromb. Haemost10 (9): 1875–86. doi:10.1111/j.1538-7836.2012.04841.xPMC 3499136PMID 22759073.
  39. McEwan PA, Yang W, Carr KH, et al. (November 2011). “Quaternary organization of GPIb-IX complex and insights into Bernard–Soulier syndrome revealed by the structures of GPIbβ and a GPIbβ/GPIX chimera”Blood118 (19): 5292–301. doi:10.1182/blood-2011-05-356253PMC 3217411PMID 21908432.
  40. Lanza F (2006). “Bernard-Soulier syndrome (hemorrhagiparous thrombocytic dystrophy)”Orphanet J Rare Dis1: 46. doi:10.1186/1750-1172-1-46PMC 1660532PMID 17109744.
  41. Nurden AT (August 2005). “Qualitative disorders of platelets and megakaryocytes”J. Thromb. Haemost3 (8): 1773–82. doi:10.1111/j.1538-7836.2005.01428.xPMID 16102044.
  42. Hollenhorst, Marie A.; Tiemeyer, Katherine H.; Mahoney, Keira E.; Aoki, Kazuhiro; Ishihara, Mayumi; Lowery, Sarah C.; Rangel-Angarita, Valentina; Bertozzi, Carolyn R.; Malaker, Stacy A. (April 2023). “Comprehensive analysis of platelet glycoprotein Ibα ectodomain glycosylation”Journal of Thrombosis and Haemostasis21 (4): 995–1009. doi:10.1016/j.jtha.2023.01.009PMC 10065957PMID 36740532.
  43. Bernard J, Soulier JP (1948). “Sur une nouvelle variete de dystrophie thrombocythaire hemorragipare congenitale”. Sem Hop Paris24: 3217–3223.
  44. Strassel C, David T, Eckly A, et al. (January 2006). “Synthesis of GPIb beta with novel transmembrane and cytoplasmic sequences in a Bernard–Soulier patient resulting in GPIb-defective signaling in CHO cells”J. Thromb. Haemost4 (1): 217–28. doi:10.1111/j.1538-7836.2005.01654.xPMID 16409472.
  45.  GRCh38: Ensembl release 89: ENSG00000198734 – Ensembl, May 2017
  46. GRCm38: Ensembl release 89: ENSMUSG00000026579 – Ensembl, May 2017
  47. “Human PubMed Reference:”National Center for Biotechnology Information, U.S. National Library of Medicine.
  48. “Mouse PubMed Reference:”National Center for Biotechnology Information, U.S. National Library of Medicine.
  49. “F5 gene: MedlinePlus Genetics”medlineplus.gov. Retrieved 2023-03-25.
  50. Villoutreix BO, Dahlbäck B (June 1998). “Structural investigation of the A domains of human blood coagulation factor V by molecular modeling”Protein Science7 (6): 1317–25. doi:10.1002/pro.5560070607PMC 2144041PMID 9655335.
  51. Thorelli E, Kaufman RJ, Dahlbäck B (June 1998). “The C-terminal region of the factor V B-domain is crucial for the anticoagulant activity of factor V”The Journal of Biological Chemistry273 (26): 16140–45. doi:10.1074/jbc.273.26.16140PMID 9632668.
  52. Macedo-Ribeiro S, Bode W, Huber R, Quinn-Allen MA, Kim SW, Ortel TL, Bourenkov GP, Bartunik HD, Stubbs MT, Kane WH, Fuentes-Prior P (November 1999). “Crystal structures of the membrane-binding C2 domain of human coagulation factor V”. Nature402 (6760): 434–39. Bibcode:1999Natur.402..434Mdoi:10.1038/46594PMID 10586886S2CID 4393638.
  53. Lam W, Moosavi L (18 July 2022). “Physiology, Factor V”StatPearls. StatPearls Publishing. PMID 31334957. Retrieved 7 February 2022.
  54. Huang JN, Koerper MA (November 2008). “Factor V deficiency: a concise review”Haemophilia14 (6): 1164–69. doi:10.1111/j.1365-2516.2008.01785.xPMID 19141156.
  55. Castoldi E (July 2021). “F5-Atlanta: Factor V-short strikes again”Journal of Thrombosis and Haemostasis19 (7): 1638–1640. doi:10.1111/jth.15351PMC 8362210PMID 34176223.
  56. Stormorken H (February 2003). “The discovery of factor V: a tricky clotting factor”Journal of Thrombosis and Haemostasis1 (2): 206–13. doi:10.1046/j.1538-7836.2003.00043.xPMID 12871488.
  57. Owren PA (April 1947). “Parahaemophilia; haemorrhagic diathesis due to absence of a previously unknown clotting factor”. Lancet1 (6449): 446–48. doi:10.1016/S0140-6736(47)91941-7PMID 20293060.
  58. Jenny RJ, Pittman DD, Toole JJ, Kriz RW, Aldape RA, Hewick RM, Kaufman RJ, Mann KG (July 1987). “Complete cDNA and derived amino acid sequence of human factor V”Proceedings of the National Academy of Sciences of the United States of America84 (14): 4846–50. Bibcode:1987PNAS…84.4846Jdoi:10.1073/pnas.84.14.4846PMC 305202PMID 3110773
  59. Bertina RM, Koeleman BP, Koster T, Rosendaal FR, Dirven RJ, de Ronde H, van der Velden PA, Reitsma PH (May 1994). “Mutation in blood coagulation factor V associated with resistance to activated protein C”. Nature369 (6475): 64–67. Bibcode:1994Natur.369…64Bdoi:10.1038/369064a0PMID 8164741S2CID 4314040.
  60. Heeb MJ, Kojima Y, Rosing J, Tans G, Griffin JH (December 1999). “C-terminal residues 621–635 of protein S are essential for binding to factor Va”The Journal of Biological Chemistry274 (51): 36187–92. doi:10.1074/jbc.274.51.36187PMID 10593904.
  61. Heeb MJ, Mesters RM, Tans G, Rosing J, Griffin JH (February 1993). “Binding of protein S to factor Va associated with inhibition of prothrombinase that is independent of activated protein C”The Journal of Biological Chemistry268 (4): 2872–77. doi:10.1016/S0021-9258(18)53854-0PMID 8428962.
  62.  GRCh38: Ensembl release 89: ENSG00000184500 – Ensembl, May 2017
  63.  GRCm38: Ensembl release 89: ENSMUSG00000022912 – Ensembl, May 2017
  64. “Human PubMed Reference:”National Center for Biotechnology Information, U.S. National Library of Medicine.
  65. “Mouse PubMed Reference:”National Center for Biotechnology Information, U.S. National Library of Medicine.
  66. Lundwall A, Dackowski W, Cohen E, Shaffer M, Mahr A, Dahlbäck B, Stenflo J, Wydro R (September 1986). “Isolation and sequence of the cDNA for human protein S, a regulator of blood coagulation”Proc. Natl. Acad. Sci. U.S.A83 (18): 6716–20. Bibcode:1986PNAS…83.6716Ldoi:10.1073/pnas.83.18.6716PMC 386580PMID 2944113.
  67. Long GL, Marshall A, Gardner JC, Naylor SL (January 1988). “Genes for human vitamin K-dependent plasma proteins C and S are located on chromosomes 2 and 3, respectively”Somat. Cell Mol. Genet14 (1): 93–8. doi:10.1007/BF01535052PMID 2829367S2CID 31236887.
  68. “Protein S deficiency”UpToDate. Retrieved May 10, 2017.
  69. Kaushansky K, Lichtman M, Prchal J, Levi M, Press O, Burns L, Caligiuri M (2015). Williams Hematology. McGraw-Hill. p. 1926.
  70. Stenflo J (1999). “Contributions of Gla and EGF-like domains to the function of vitamin K-dependent coagulation factors”. Critical Reviews in Eukaryotic Gene Expression9 (1): 59–88. doi:10.1615/CritRevEukaryotGeneExpr.v9.i1.50PMID 10200912.
  71. Rosner W (Dec 1991). “Plasma steroid-binding proteins”. Endocrinology and Metabolism Clinics of North America20 (4): 697–720. doi:10.1016/S0889-8529(18)30240-8PMID 1778174.
  72. Dahlbäck B, Lundwall A, Stenflo J (Jun 1986). “Primary structure of bovine vitamin K-dependent protein S”Proceedings of the National Academy of Sciences83 (12): 4199–203. Bibcode:1986PNAS…83.4199Ddoi:10.1073/pnas.83.12.4199PMC 323699PMID 2940598.
  73. Castoldi E, Hackeng TM (September 2008). “Regulation of coagulation by protein S”. Curr. Opin. Hematol15 (5): 529–36. doi:10.1097/MOH.0b013e328309ec97PMID 18695379S2CID 11522770.
  74. Beauchamp NJ, Dykes AC, Parikh N, Campbell Tait R, Daly ME (June 2004). “The prevalence of, and molecular defects underlying, inherited protein S deficiency in the general population”. Br. J. Haematol125 (5): 647–54. doi:10.1111/j.1365-2141.2004.04961.xPMID 15147381S2CID 705661.
  75. García de Frutos P, Fuentes-Prior P, Hurtado B, Sala N (September 2007). “Molecular basis of protein S deficiency”. Thromb. Haemost98 (3): 543–56. doi:10.1160/th07-03-0199PMID 17849042S2CID 17274778.
  76. Heeb MJ, Kojima Y, Rosing J, Tans G, Griffin J H (Dec 1999). “C-terminal residues 621-635 of protein S are essential for binding to factor Va”J. Biol. Chem. UNITED STATES. 274 (51): 36187–92. doi:10.1074/jbc.274.51.36187ISSN 0021-9258PMID 10593904S2CID 45995946.
  77. Heeb MJ, Mesters R M, Tans G, Rosing J, Griffin J H (Feb 1993). “Binding of protein S to factor Va associated with inhibition of prothrombinase that is independent of activated protein C”J. Biol. Chem. UNITED STATES. 268 (4): 2872–7. doi:10.1016/S0021-9258(18)53854-0ISSN 0021-9258PMID 8428962.
  78. GRCh38: Ensembl release 89: ENSG00000011422 – Ensembl, May 2017
  79. GRCm38: Ensembl release 89: ENSMUSG00000046223 – Ensembl, May 2017
  80. “Human PubMed Reference:”National Center for Biotechnology Information, U.S. National Library of Medicine.
  81. “Mouse PubMed Reference:”National Center for Biotechnology Information, U.S. National Library of Medicine.
  82. Kessler, Pascal; Marchot, Pascale; Silva, Marcela; Servent, Denis (August 2017). “The three-finger toxin fold: a multifunctional structural scaffold able to modulate cholinergic functions”Journal of Neurochemistry142: 7–18. doi:10.1111/jnc.13975PMID 28326549.
  83. Llinas P, Le Du MH, Gårdsvoll H, Danø K, Ploug M, Gilquin B, Stura EA, Ménez A (May 2005). “Crystal structure of the human urokinase plasminogen activator receptor bound to an antagonist peptide”The EMBO Journal24 (9): 1655–63. doi:10.1038/sj.emboj.7600635PMC 1142576PMID 15861141.
  84. Huai Q, Mazar AP, Kuo A, Parry GC, Shaw DE, Callahan J, Li Y, Yuan C, Bian C, Chen L, Furie B, Furie BC, Cines DB, Huang M (February 2006). “Structure of human urokinase plasminogen activator in complex with its receptor”. Science311 (5761): 656–9. Bibcode:2006Sci…311..656Hdoi:10.1126/science.1121143PMID 16456079S2CID 39521660.
  85. ViroGates. “What is suPAR”suPARnostic® by ViroGates. Retrieved 2021-09-27.
  86. Thunø M, Macho B, Eugen-Olsen J (2009). “suPAR: the molecular crystal ball”Disease Markers27 (3): 157–72. doi:10.1155/2009/504294PMC 3835059PMID 19893210.
  87. Desmedt S, Desmedt V, Delanghe JR, Speeckaert R, Speeckaert MM (2017). “The Intriguing Role of Soluble Urokinase Receptor in Inflammatory Diseases”. Critical Reviews in Clinical Laboratory Sciences54 (2): 117–133. doi:10.1080/10408363.2016.1269310PMID 28084848S2CID 32624995.
  88. Wagner V, Gil J (2020). “T Cells Engineered to Target Senescence”Nature583 (7814): 37–38. Bibcode:2020Natur.583…37Wdoi:10.1038/d41586-020-01759-xhdl:10044/1/80980PMID 32601490.
  89. Amor C, Feucht J, Lowe SW (2020). “Senolytic CAR T cells reverse senescence-associated pathologies”Nature583 (7814): 127–132. doi:10.1038/s41586-020-2403-9PMC 7583560PMID 32555459.
  90. Josip Madunić (2018). “The Urokinase Plasminogen Activator System in Human Cancers: An Overview of Its Prognostic and Predictive Role”Thrombosis and Haemostasis118 (12): 2020–2036. doi:10.1055/s-0038-1675399PMID 30419600.
  91. Czekay RP, Kuemmel TA, Orlando RA, Farquhar MG (May 2001). “Direct binding of occupied urokinase receptor (uPAR) to LDL receptor-related protein is required for endocytosis of uPAR and regulation of cell surface urokinase activity”Molecular Biology of the Cell12 (5): 1467–79. doi:10.1091/mbc.12.5.1467PMC 34598PMID 11359936.

Further reading

External links

Coagulation cascade
Proteinsclusters of differentiation (see also list of human clusters of differentiation)
Proteinglycoconjugateglycoproteins and glycopeptides
Integrins
Antiangiogenics
Proteinglycoconjugateglycoproteins and glycopeptides
Proteinscleroproteins

Categories

Leave a Reply

Your email address will not be published. Required fields are marked *

This site uses Akismet to reduce spam. Learn how your comment data is processed.