p-Phenylenediamine (PPD) is a derivative of aniline used in kevlar, hair dye and henna substitutions among other things, the derivatives of which are used in antiozonants among other horrors

p-Phenylenediamine (PPD) is an organic compound with the formula C6H4(NH2)2. This derivative of aniline is a white solid, but samples can darken due to air oxidation.It is mainly used as a component of engineering polymers and composites like kevlar. It is also an ingredient in hair dyes and is occasionally used as a substitute for henna.

Production

PPD is produced via three routes. Most commonly, 4-nitrochlorobenzene is treated with ammonia and the resulting 4-nitroaniline is then hydrogenated:

In the DuPont route, aniline is converted to diphenyltriazine, which is then converted by acid-catalysis to 4-aminoazobenzene. Hydrogenation of the latter affords PPD.

4-Nitroanilinep-nitroaniline or 1-amino-4-nitrobenzene is an organic compound with the formula C6H6N2O2. A yellow solid, it is one of three isomers of nitroaniline. It is an intermediate in the production of dyes, antioxidants, pharmaceuticals, gasoline, gum inhibitors, poultry medicines, and as a corrosion inhibitor. 4-Nitroaniline is produced industrially via the amination of 4-nitrochlorobenzene:

ClC6H4NO2 + 2 NH3 → H2NC6H4NO2 + NH4Cl

Below is a laboratory synthesis of 4-nitroaniline from aniline. The key step in this reaction sequence is an electrophilic aromatic substitution to install the nitro group para to the amino group. The amino group can be easily protonated and become a meta director. Therefore, a protection of the acetyl group is required. After this reaction, a separation must be performed to remove 2-nitroaniline, which is also formed in a small amount during the reaction.

Applications

4-Nitroaniline is mainly consumed industrially as a precursor to p-phenylenediamine, an important dye component. The reduction is effected using iron metal and by catalytic hydrogenation.

It is a starting material for the synthesis of Para Red, the first azo dye:

Synthesis of Para Red

Laboratory use

Nitroaniline undergoes diazotization, which allows access to 1,4-dinitrobenzene and nitrophenylarsonic acid. With phosgene, it converts to 4-nitrophenylisocyanate.

Carbon snake demonstration

When heated with sulfuric acid, it dehydrates and polymerizes explosively into a rigid foam.

Carbon snake local links

In Carbon snake demo, paranitroaniline can be used instead of sugar, if the experiment is allowed to proceed under an obligatory fumehood. With this method the reaction phase prior to the black snake’s appearance is longer, but once complete, the black snake itself rises from the container very rapidly. This reaction may cause an explosion if too much sulfuric acid is used.

Toxicity

The compound is toxic by way of inhalation, ingestion, and absorption, and should be handled with care. Its LD50 in rats is 750.0 mg/kg when administered orally. 4-Nitroaniline is particularly harmful to all aquatic organisms, and can cause long-term damage to the environment if released as a pollutant.

See also

Uses

Precursor to polymers

PPD is a precursor to aramid plastics and fibers such as Kevlar and Twaron. These applications exploit PPD’s difunctionality, i.e. the presence of two amines which allow the molecules to be strung together. This polymer arises from the reaction of PPD and terephthaloyl chloride. The reaction of PPD with phosgene gives the diisocyanate, a precursor to urethane polymers.

Molecular structure of Kevlar: the monomer subunit is bolded, dashed lines indicate hydrogen bonds.

Dyeing

This compound is a common hair dye. Its use is being supplanted by other aniline analogues and derivatives such as 2,5-diamino(hydroxyethylbenzene and 2,5-diaminotoluene). Other popular derivatives include tetraaminopyrimidine and indoanilines and indophenols. Derivatives of diaminopyrazole give both red and violet colours. In these applications, the nearly colourless dye precursor oxidizes to the dye.

  • Thomas Clausen et al. “Hair Preparations” in Ullmann’s Encyclopedia of Industrial Chemistry, 2007, Wiley-VCH, Weinheim. doi:10.1002/14356007.a12_571.pub2

Rubber antioxidant

A vehicle tire showing signs of ozone cracking

PPD is easily oxidized, and for this reason, derivatives of PPD are used as antiozonants in the production of rubber products (e.g., IPPD). The substituents (naphthyl, isopropyl, etc.) affect the effectiveness of their antioxidant roles as well as their properties as skin irritants.

  • Hans-Wilhelm Engels et al., “Rubber, 4. Chemicals and Additives” in Ullmann’s Encyclopedia of Industrial Chemistry, 2007, Wiley-VCH, Weinheim. doi:10.1002/14356007.a23_365.pub2

An antiozonant, also known as anti-ozonant, is an organic compound that prevents or retards damage caused by ozone. The most important antiozonants are those which prevent degradation of elastomers like rubber. A number of research projects study the application of another type of antiozonants to protect plants as well as salmonids that are affected by the chemicals.

Effect of ozone

Main article: Ozone cracking

Many elastomers are rich in unsaturated double bonds, which can react with ozone present in the air in process known as ozonolysis. This reaction breaks the polymer chains, degrading the mechanical properties of the material. The most obvious effect of this is cracking of the elastomer (ozone cracking), which is exacerbated by mechanical stress. The rate of degradation is effected both by the chemical structure of the elastomer and the amount of ozone in the environment. Elastomers which are rich in double bonds, such as natural rubberpolybutadienestyrene-butadiene rubber and nitrile rubber are the most sensitive to degradation, whereas butyl rubberpolychloropreneEPDM and Viton are more resistant. Ground-level ozone is naturally present, but it is also a product of smog and thus degradation is faster in areas of high air pollution. All of these factors make vehicle tires particularly vulnerable, as they contain a high level of unsaturated groups, operate in areas prone to air pollution and are subjected to significant mechanical stresses.

The distribution of atmospheric ozone

Protection of elastomers

Antiozonants are used as additives in tire manufacturing to retard the effects of ozone.

  • Hans-Wilhelm Engels et al., “Rubber, 4. Chemicals and Additives” in Ullmann’s Encyclopedia of Industrial Chemistry, 2007, Wiley-VCH, Weinheim. doi:10.1002/14356007.a23_365.pub2.

The most common antiozonants for elastomers are N,N′-substituted p-phenylenediamines (PPD) which can be categorized in three types:

Other classes include:

Protection of plants

For the protection of plants like winter wheat[citation needed] or maize.  

Ethylene diurea (EDU) has been used successfully as antiozonant.

Other uses

A substituted form of PPD sold under the name CD-4 is also used as a developing agent in the C-41 color photographic film development process, reacting with the silver grains in the film and creating the colored dyes that form the image.

  • The C-41 process is the same for all C-41 films, although different manufacturers’ processing chemistries vary slightly. After exposure, the film is developed in a “color developer”. The developing ingredient is a paraphenylene diamine-based chemical known as CD-4. The developer develops the silver in the emulsion layers. As the silver is developing, oxidized developer reacts with the dye couplers, resulting in formation of dyes. The control of temperature and agitation of the film in the developer is critical in obtaining consistent, accurate results. Incorrect temperature can result in severe color shifts or significant under- or overdevelopment of the film. After the developer, a bleach converts the metallic silver generated by development to silver halide, which is soluble in fixer. After the bleach, a fixer removes the silver halide. This is followed by a wash, and a final stabilizer and rinse to complete the process. There are simplified versions of the process that use a combined bleach-fix (EDTA) that dissolves the silver generated by development and removes undeveloped silver halide. These are not used by commercial C-41 processors, and are marketed for home or field use.
  • The fourth in the series of color developing agents used in developing color films, commonly known as CD-4, is chemically known as 4-(N-Ethyl-N-2-hydroxyethyl)-2-methylphenylenediamine sulfate. In color development, after reducing a silver atom in a silver halide crystal, the oxidized developing agent combines with a color coupler to form a color dye molecule.
  • See Also

PPD is also used as a Henna surrogate for temporary tattoos. Its usage can lead to severe contact dermatitis. Oh…they forget the side effect of death. The internet suggests young people, primarily girls, are committing suicide with this stuff. Not sure I believe the deaths are suicides.

Suicide by self-poisoning is a common cause of death, especially in the younger population. More specifically, hair-dye poisoning is being increasingly used for suicide. Paraphenylenediamine (PPD), also known as “Kala pathar”, is a highly toxic ingredient present in hair-dye that can cause death.”

  • Omer Sultan M, Inam Khan M, Ali R, Farooque U, Hassan SA, Karimi S, Cheema O, Pillai B, Asghar F, Javed R. Paraphenylenediamine (Kala Pathar) Poisoning at the National Poison Control Center in Karachi: A Prospective Study. Cureus. 2020 May 29;12(5):e8352. doi: 10.7759/cureus.8352. PMID: 32617225; PMCID: PMC7325408.

There are three pages of results when I type the search criteria into PMC. These are from page 1.

Para-phenylenediamine (shown here) is chemically very different from the lawsone found in henna.
  • Black henna powder may be derived from indigo (from the plant Indigofera tinctoria). It may also contain unlisted dyes and chemicals such as para-phenylenediamine (PPD), which can stain skin black quickly, but can cause severe allergic reactions and permanent scarring if left on for more than 2–3 days. The FDA specifically forbids PPD to be used for this purpose, and may prosecute those who produce black henna. Artists who injure clients with black henna in the U.S. may be sued for damages.
  • The name arose from imports of plant-based hair dyes into the West in the late 19th century. Partly fermented, dried indigo was called black henna because it could be used in combination with henna to dye hair black. This gave rise to the belief that there was such a thing as black henna which could dye skin black. Indigo will not dye skin black. Pictures of indigenous people with black body art (either alkalized henna or from some other source) also fed the belief that there was such a thing as black henna.[citation needed]
  • In the 1990s, henna artists in Africa, India, Bali, the Arabian Peninsula and the West began to experiment with PPD-based black hair dye, applying it as a thick paste as they would apply henna, in an effort to find something that would quickly make jet-black temporary body art. PPD can cause severe allergic reactions, with blistering, intense itching, permanent scarring, and permanent chemical sensitivities. Estimates of allergic reactions range between 3% and 15%. Henna does not cause these injuries. Black henna made with PPD can cause lifelong sensitization to coal tar derivatives while black henna made with gasoline, kerosene, lighter fluid, paint thinner, and benzene has been linked to adult acute leukemia.
    • Van den Keybus, C.; Morren, M.-A.; Goossens, A. (September 2005). “Walking difficulties due to an allergic reaction to a temporary tattoo”. Contact Dermatitis. 53 (3): 180–181. doi:10.1111/j.0105-1873.2005.0407m.xPMID 16128770S2CID 28624688.
    • Stante, M; Giorgini, S; Lotti, T (April 2006). “Allergic contact dermatitis from henna temporary tattoo”. Journal of the European Academy of Dermatology and Venereology. 20 (4): 484–486. doi:10.1111/j.1468-3083.2006.01483.xPMID 16643167S2CID 43067542.
    • Jung, Peter; Sesztak-Greinecker, Gabriele; Wantke, Felix; Gotz, Manfred; Jarisch, Reinhart; Hemmer, Wolfgang (April 2006). “A painful experience: black henna tattoo causing severe, bullous contact dermatitis”. Contact Dermatitis. 54 (4): 219–220. doi:10.1111/j.0105-1873.2006.0775g.xPMID 16650103S2CID 43613761.
    • Hassan, Inaam Bashir; Islam, Sherief I. A. M.; Alizadeh, Hussain; Kristensen, Jorgen; Kambal, Amr; Sonday, Shanaaz; Bernseen, Roos M. D. (21 July 2009). “Acute leukemia among the adult population of United Arab Emirates: an epidemiological study”. Leukemia & Lymphoma. 50 (7): 1138–1147. doi:10.1080/10428190902919184PMID 19557635S2CID 205701235.
  • The most frequent serious health consequence of having a black henna temporary tattoo is sensitization to hair dye and related chemicals. If a person has had a black henna tattoo and later dyes their hair with chemical hair dye, the allergic reaction may be life-threatening and require hospitalization. Because of the epidemic of PPD allergic reactions, chemical hair dye products now post warnings on the labels: “Temporary black henna tattoos may increase your risk of allergy. Do not colour your hair if: … – you have experienced a reaction to a temporary black henna tattoo in the past.”
    • Sosted, Heidi; Johansen, Jeanne Duus; Andersen, Klaus Ejner; Menne, Torkil (February 2006). “Severe allergic hair dye reactions in 8 children”. Contact Dermatitis. 54 (2): 87–91. doi:10.1111/j.0105-1873.2006.00746.xPMID 16487280S2CID 39281376.
    • Commission Directive 2009/134/EC of 28 October 2009 amending Council Directive 76/768/EEC concerning cosmetic products for the purposes of adapting Annex III thereto to technical progress
  • PPD is illegal for use on skin in western countries, though enforcement is difficult. Physicians have urged governments to legislate against black henna because of the frequency and severity of injuries, especially to children. To assist the prosecution of vendors, government agencies encourage citizens to report injuries and illegal use of PPD black henna. When used in hair dye, the PPD amount must be below 6%, and application instructions warn that the dye must not touch the scalp and must be quickly rinsed away. Black henna pastes have PPD percentages from 10% to 80%, and are left on the skin for half an hour.
  • PPD black henna use is widespread, particularly in tourist areas. Because the blistering reaction appears 3 to 12 days after the application, most tourists have left and do not return to show how much damage the artist has done. This permits the artists to continue injuring others, unaware they are causing severe injuries. The high-profit margins of black henna and the demand for body art that emulates “tribal tattoos” further encourage artists to deny the dangers.
  • It is not difficult to recognize and avoid PPD black henna:
    • if a paste stains skin on the torso black in less than ½ hour, it has PPD in it.
    • if the paste is mixed with peroxide, or if peroxide is wiped over the design to bring out the color, it has PPD in it.
  • PPD sensitivity is lifelong. A person who has become sensitized through black henna tattoos may have future allergic reactions to perfumes, printer ink, chemical hair dyes, textile dye, photographic developer, sunscreen and some medications. A person who has had a black henna tattoo should consult their physician about the health consequences of PPD sensitization.

PPD is also used as a histological stain for lipids such as myelin.

PPD is used by lichenologists in the PD test to aid identification of Lichens. PPD is used extensively as a cross-linking agent in the formation of COFs (covalent organic frameworks), which have a number of applications in dyes and aromatic compounds adsorption.

P test

This is also known as the PD test. It uses a 1–5% ethanolic solution of para-phenylenediamine (PD), made by placing a drop of ethanol (70–95%) over a few crystals of the chemical; this yields an unstable, light sensitive solution that lasts for about a day. An alternative form of this solution, called Steiner’s solution, is much longer lasting although it produces less intense colour reactions. It is typically prepared by dissolving 1 gram of PD, 10 grams of sodium sulfite, and 0.5 millilitres of detergent in 100 millilitres of water; initially pink in colour, the solution becomes purple with age. Steiner’s solution will last for months. The phenylenediamine reacts with aldehydes to yield Schiff bases according to the following reaction:[8]R−CHO + H2N−C6H4−NH2 → R−CH=N−C6H4−NH2 + H2O Products of this reaction are yellow to red in colour. Most β-orcinol depsidones and some β-orcinol depsides will react positively. PD is poisonous both as a powder and a solution, and surfaces that come in contact with it (including skin) will discolour.

Safety

The aquatic LD50 of PPD is 0.028 mg/L. The U.S. Environmental Protection Agency reported that in rats and mice chronically exposed to PPD in their diet, it simply depressed body weights, and no other clinical signs of toxicity were observed in several studies. One review of 31 English-language articles published between January 1992 and February 2005 that investigated the association between personal hair dye use and cancer as identified through the PubMed search engine found “at least one well-designed study with detailed exposure assessment” that observed associations between personal hair dye use and non-Hodgkin’s lymphoma, multiple myeloma, acute leukemia, and bladder cancer, but those associations were not consistently observed across studies. A formal meta-analysis was not possible due to the heterogeneity of the exposure assessment across the studies.

In 2005–06, it was the tenth-most-prevalent allergen in patch tests (5.0%).

The CDC lists PPD as being a contact allergen. Exposure routes are through inhalation, skin absorption, ingestion, and skin and/or eye contact. Symptoms of exposure to PPD include throat irritation (pharynx and larynx), bronchial asthma, and sensitization dermatitis. Sensitization is a lifelong issue, which may lead to active sensitization to products, including but not limited to black clothing, various inks, hair dye, dyed fur, dyed leather, and certain photographic products. It was voted Allergen of the Year in 2006 by the American Contact Dermatitis Society.

Poisoning by PPD is rare in Western countries.In contrast, poisoning by PPD has occurred in Eastern countries, such as Pakistan, where people have committed suicide by consuming it.

See also

References

  1. Merck Index, 11th Edition, 7256
  2. “P-Phenylenediamine (1,4-Diaminobenzene)”. Archived from the original on 2012-03-13. Retrieved 2011-07-14.
  3. NIOSH Pocket Guide to Chemical Hazards. “#0495”National Institute for Occupational Safety and Health (NIOSH).
  4. Haynes, William M., ed. (2016). CRC Handbook of Chemistry and Physics (97th ed.). CRC Press. pp. 5–89. ISBN 978-1498754286.
  5. “p-Phenylene diamine”Immediately Dangerous to Life or Health Concentrations (IDLH)National Institute for Occupational Safety and Health (NIOSH).
  6. “p-Phenylenediamine MSDS”. Thermo Fisher Scientific.
  7. Ullmann’s Encyclopedia of Industrial Chemistry (1 ed.). Wiley. 2003-03-11. doi:10.1002/14356007.a19_405ISBN 978-3-527-30385-4.
  8. Thomas Clausen et al. “Hair Preparations” in Ullmann’s Encyclopedia of Industrial Chemistry, 2007, Wiley-VCH, Weinheim. doi:10.1002/14356007.a12_571.pub2
  9. Hans-Wilhelm Engels et al., “Rubber, 4. Chemicals and Additives” in Ullmann’s Encyclopedia of Industrial Chemistry, 2007, Wiley-VCH, Weinheim. doi:10.1002/14356007.a23_365.pub2
  10. “Chemical Tests”. The British Lichen Society. Retrieved 2019-04-30.
  11. p-Phenylenediamine, U.S. Environmental Protection Agency
  12. Rollison, DE; Helzlsouer, KJ; Pinney, SM (2006). “Personal hair dye use and cancer: a systematic literature review and evaluation of exposure assessment in studies published since 1992”. Journal of Toxicology and Environmental Health Part B: Critical Reviews9 (5): 413–39. Bibcode:2006JTEHB…9..413Rdoi:10.1080/10937400600681455PMID 17492526S2CID 23749135.
  13. Zug, Kathryn A.; Warshaw, Erin M.; Fowler, Joseph F.; Maibach, Howard I.; Belsito, Donald L.; Pratt, Melanie D.; Sasseville, Denis; Storrs, Frances J.; Taylor, James S.; Mathias, C. G. Toby; Deleo, Vincent A.; Rietschel, Robert L.; Marks, James (2009). “Patch-test results of the North American Contact Dermatitis Group 2005-2006”Dermatitis: Contact, Atopic, Occupational, Drug20 (3): 149–160. doi:10.2310/6620.2009.08097ISSN 2162-5220PMID 19470301S2CID 24088485.
  14. “The NIOSH Pocket Guide to Chemical Hazards”. Archived from the original on 2017-10-24. Retrieved 2017-09-07.
  15. “NIOSH Registry of Toxic Effects of Chemical Substances (RTECS) entry for p-Phenylenediamine (PPD)”. Archived from the original on 2010-03-31. Retrieved 2017-09-07.
  16. Ashraf, W.; Dawling, S.; Farrow, L. J. (1994). “Systemic Paraphenylenediamine (PPD) Poisoning: A Case Report and Review”. Human & Experimental Toxicology13 (3): 167–70. Bibcode:1994HETox..13..167Adoi:10.1177/096032719401300305PMID 7909678S2CID 31229733.
  17. Omer Sultan, Muhammad; Inam Khan, Muhammad; Ali, Rahmat; Farooque, Umar; Hassan, Syed Adeel; Karimi, Sundas; Cheema, Omer; Pillai, Bharat; Asghar, Fahham; Javed, Rafay (2020-05-29). “Paraphenylenediamine (Kala Pathar) Poisoning at the National Poison Control Center in Karachi: A Prospective Study”Cureus12 (5): e8352. doi:10.7759/cureus.8352ISSN 2168-8184PMC 7325408PMID 32617225.
  18. Layer, R. W., & Lattimer, R. P. (1990). Protection of rubber against ozone. Rubber Chemistry and Technology, 63(3), 426-450.
  19. Hans-Wilhelm Engels et al., “Rubber, 4. Chemicals and Additives” in Ullmann’s Encyclopedia of Industrial Chemistry, 2007, Wiley-VCH, Weinheim. doi:10.1002/14356007.a23_365.pub2.
  20. 6PPP
  21. IPPD Archived December 5, 2008, at the Wayback Machine (product page)
  22. Antioxidants & Antidegradants
  23. Singh, Aditya Abha; Chaurasia, Meenakshi; Gupta, Vaishali; Agrawal, Madhoolika; Agrawal, S. B. (May 2018). “Responses of Zea mays L. cultivars ‘Buland’ and ‘Prakash’ to an antiozonant ethylene diurea grown under ambient and elevated levels of ozone”Acta Physiologiae Plantarum40 (5): 92. doi:10.1007/s11738-018-2666-zISSN 0137-5881S2CID 13832708.
  24. Bachmann, W. E.; Horton, W. J.; Jenner, E. L.; MacNaughton, N. W.; Maxwell, C. E. (1950). “The Nitration of Derivatives of Ethylenediamine1”. Journal of the American Chemical Society72 (7): 3132–3134. doi:10.1021/ja01163a090ISSN 0002-7863.
  25. Archambualt, Daniel; Li, Xiaomei (January 2002). “Evaluation of the Anti-oxidant Ethylene Diurea (EDU) as a protectant against Ozone effects on Crops” (PDF). Alberta Environment. Archived from the original (PDF) on 2012-04-09. Retrieved 2012-10-12. 
  26. Hoshika Y, Omasa K, Paoletti E (2012). “Whole-tree water use efficiency is decreased by ambient ozone and not affected by O3-induced stomatal sluggishness”PLOS ONE7 (6): e39270. doi:10.1371/journal.pone.0039270PMC 3377656PMID 22723982.
  27. Ribas, A.; Peñuelas, J. (2000). “Effects of Ethylene diurea as a protective antiozonant on beans (Phaseolus vulgaris cv Lit) exposed to different tropospheric ozone doses in Catalonia (NE Spain)”. Water, Air, and Soil Pollution117 (1/4): 263–271. doi:10.1023/A:1005138120490ISSN 0049-6979S2CID 93318643.
  28. N,N′-Di-sec-butyl-p-phenylenediamine”Sigma-Aldrich.
  29. U.S. Tire Manufacturers Association (July 15, 2021). “Statement of Sarah E. Amick Vice President EHS&S and Senior Counsel U.S. Tire Manufacturers Association”. Committee on Natural Resources Subcommittee on Oversight and Investigations United States House of Representatives.
  30. Krüger, R H; Boissiére, C; Klein-Hartwig, K; Kretzschmar, H-J (2005). “New phenylenediamine antiozonants for commodities based on natural and synthetic rubber”. Food Addit Contam22 (10): 968–974. doi:10.1080/02652030500098177PMID 16227180S2CID 10548886.
  31. Hans-Wilhelm Engels et al., “Rubber, 4. Chemicals and Additives” in Ullmann’s Encyclopedia of Industrial Chemistry, 2007, Wiley-VCH, Weinheim. doi:10.1002/14356007.a23_365.pub2
  32.  Lattimer, R. P.; Hooser, E. R.; Layer, R. W.; Rhee, C. K. (1 May 1983). “Mechanisms of Ozonation of N-(1,3-Dimethylbutyl)-N′-Phenyl-p-Phenylenediamine”. Rubber Chemistry and Technology56 (2): 431–439. doi:10.5254/1.3538136.
  33. Cataldo, Franco; Faucette, Brad; Huang, Semone; Ebenezer, Warren (January 2015). “On the early reaction stages of ozone with N,N′-substituted p-phenylenediamines (6PPD, 77PD) and N,N′,N”-substituted-1,3,5-triazine “Durazone®”: An electron spin resonance (ESR) and electronic absorption spectroscopy study”. Polymer Degradation and Stability111: 223–231. doi:10.1016/j.polymdegradstab.2014.11.011.
  34. Cataldo, Franco (January 2018). “Early stages of p-phenylenediamine antiozonants reaction with ozone: Radical cation and nitroxyl radical formation”. Polymer Degradation and Stability147: 132–141. doi:10.1016/j.polymdegradstab.2017.11.020.
  35. Seiwert, Bettina; Nihemaiti, Maolida; Troussier, Mareva; Weyrauch, Steffen; Reemtsma, Thorsten (April 2022). “Abiotic oxidative transformation of 6-PPD and 6-PPD quinone from tires and occurrence of their products in snow from urban roads and in municipal wastewater”Water Research212: 118122. Bibcode:2022WatRe.21218122Sdoi:10.1016/j.watres.2022.118122PMID 35101694S2CID 246336931.
  36. Tian, Zhenyu; Zhao, Haoqi; Peter, Katherine T.; Gonzalez, Melissa; Wetzel, Jill; Wu, Christopher; Hu, Ximin; Prat, Jasmine; Mudrock, Emma; Hettinger, Rachel; Cortina, Allan E.; Biswas, Rajshree Ghosh; Kock, Flávio Vinicius Crizóstomo; Soong, Ronald; Jenne, Amy; Du, Bowen; Hou, Fan; He, Huan; Lundeen, Rachel; Gilbreath, Alicia; Sutton, Rebecca; Scholz, Nathaniel L.; Davis, Jay W.; Dodd, Michael C.; Simpson, Andre; McIntyre, Jenifer K. (3 December 2020), “A ubiquitous tire rubber–derived chemical induces acute mortality in coho salmon”, Science371 (6525): 185–189, doi:10.1126/science.abd6951PMID 33273063S2CID 227281491… existing TWP [tire wear particle] loading, leaching, and toxicity assessments are clearly incomplete. … Accordingly, the human health effects of such exposures merit evaluation. … It is unlikely that coho salmon are uniquely sensitive … ( in print 8 Jan 2021)
  37. Also an erratum to this paper published in Science vol. 375, No. 6582, 18 Feb 2022 doi:10.1126/science.abo5785 reporting the updated toxicity estimates, as referenced below.
  38. Zeng, Lixi; Li, Yi; Sun, Yuxin; Liu, Liang-Ying; Shen, Mingjie; Du, Bibai (31 January 2023). “Widespread Occurrence and Transport of p -Phenylenediamines and Their Quinones in Sediments across Urban Rivers, Estuaries, Coasts, and Deep-Sea Regions”. Environmental Science & Technology. 57 (6): 2393–2403. Bibcode:2023EnST…57.2393Zdoi:10.1021/acs.est.2c07652PMID 36720114S2CID 256458111.
  39. “Pollution from car tires is killing off salmon on US west coast, study finds”The Guardian. 3 December 2020.
  40. “Scientists solve mystery of mass coho salmon deaths. The killer? A chemical from car tires”Los Angeles Times. 3 December 2020.
  41. Johannessen, Cassandra; Helm, Paul; Lashuk, Brent; Yargeau, Viviane; Metcalfe, Chris D. (February 2022). “The Tire Wear Compounds 6PPD-Quinone and 1,3-Diphenylguanidine in an Urban Watershed”Archives of Environmental Contamination and Toxicology82 (2): 171–179. doi:10.1007/s00244-021-00878-4PMC 8335451PMID 34347118.
  42. Markus Brinkmann; David Montgomery; Summer Selinger; Justin G. P. Miller; Eric Stock (2022-03-02), “Acute Toxicity of the Tire Rubber-Derived Chemical 6PPD-quinone to Four Fishes of Commercial, Cultural, and Ecological Importance”, Environmental Science & Technology Letters, vol. 9, no. 4, pp. 333–338, Bibcode:2022EnSTL…9..333Bdoi:10.1021/acs.estlett.2c00050S2CID 247336687
  43. Tian, Zhenyu; Gonzalez, Melissa; Rideout, Craig; Zhao, Hoaqi Nina; Hu, Ximin; Wetzel, Jill; Mudrock, Emma; James, C. Andrew; McIntyre, Jenifer K; Kolodziej, Edward P (11 January 2022), “6PPD-Quinone: Revised Toxicity Assessment and Quantification with a Commercial Standard”, Environmental Science & Technology Letters9 (2): 140–146, Bibcode:2022EnSTL…9..140Tdoi:10.1021/acs.estlett.1c00910S2CID 245893533
  44. Lena Beck (17 May 2022). “Your car is killing coho salmon”The Counter.
  45. Klauschies, Toni; Isanta-Navarro, Jana (2022-07-10). “The joint effects of salt and 6PPD contamination on a freshwater herbivore” (PDF). Science of the Total Environment829: 154675. Bibcode:2022ScTEn.829o4675Kdoi:10.1016/j.scitotenv.2022.154675PMID 35314241S2CID 247577987 – via Dynatrait.
  46. Du, Bibai; Liang, Bowen; Li, Yi; Shen, Mingjie; Liu, Liang-Ying; Zeng, Lixi (13 December 2022). “First Report on the Occurrence of N -(1,3-Dimethylbutyl)- N ′-phenyl- p -phenylenediamine (6PPD) and 6PPD-Quinone as Pervasive Pollutants in Human Urine from South China”. Environmental Science & Technology Letters9 (12): 1056–1062. Bibcode:2022EnSTL…9.1056Ddoi:10.1021/acs.estlett.2c00821S2CID 253828438.
  47. Agua, Alon; Stanton, Ryan; Pirrung, Michael (2021-02-04). “Preparation of 2-((4-Methylpentan-2-Yl)amino)-5-(Phenylamino)cyclohexa-2,5-Diene-1,4-Dione (6PPD-Quinone), an Environmental Hazard for Salmon” (PDF). ChemRxivdoi:10.26434/chemrxiv.13698985.v1S2CID 234062284.
  48. Lewis, P.M. (January 1986). “Effect of ozone on rubbers: Countermeasures and unsolved problems”. Polymer Degradation and Stability15 (1): 33–66. doi:10.1016/0141-3910(86)90004-2.
  49. Cataldo, Franco (January 2018). “Early stages of p-phenylenediamine antiozonants reaction with ozone: Radical cation and nitroxyl radical formation”. Polymer Degradation and Stability147: 132–141. doi:10.1016/j.polymdegradstab.2017.11.020.
  50. Choi, Sung-Seen (5 July 1997). “Migration of Antidegradants to the Surface in NR and SBR Vulcanizates”. Journal of Applied Polymer Science65 (1): 117–125. doi:10.1002/(SICI)1097-4628(19970705)65:1<117::AID-APP15>3.0.CO;2-0.
  51. Ignatz-Hoover, Frederick; To, Byron H.; Datta, R. N.; De Hoog, Arie J.; Huntink, N. M.; Talma, A. G. (1 July 2003). “Chemical Additives Migration in Rubber”. Rubber Chemistry and Technology76 (3): 747–768. doi:10.5254/1.3547765.
  52. Cao, Guodong; Wang, Wei; Zhang, Jing; Wu, Pengfei; Zhao, Xingchen; Yang, Zhu; Hu, Di; Cai, Zongwei (5 April 2022). “New Evidence of Rubber-Derived Quinones in Water, Air, and Soil”Environmental Science & Technology56 (7): 4142–4150. Bibcode:2022EnST…56.4142Cdoi:10.1021/acs.est.1c07376PMC 8988306PMID 35316033.
  53. Lammintausta, K; Kalimo, K (1985). “Sensitivity to Rubber. Study with Rubber Mixes and Individual Rubber Chemicals”. Dermatosen in Beruf und Umwelt. Occupation and Environment33 (6): 204–8. PMID 2936592.
  54. Conde-Salazar, Luis; del-Río, Emilio; Guimaraens, Dolores; Domingo, Antonia González (August 1993). “Type IV Allergy to Rubber Additives: A 10-Year Study of 686 Cases”. Journal of the American Academy of Dermatology29 (2): 176–180. doi:10.1016/0190-9622(93)70163-NPMID 8335734.
  55. Jordan, William P. Jr. (1971-01-01). “Contact Dermatitis From N-Isopropyl-N-Phenylparaphenylenediamine: “Volkswagen Dermatitis””. Archives of Dermatology103 (1): 85–87. doi:10.1001/archderm.1971.04000130087014ISSN 0003-987X.
  56. Zhong, Liqiao; Peng, Weijuan; Liu, Chunsheng; Gao, Lei; Chen, Daqing; Duan, Xinbin (July 2022). “IPPD-induced growth inhibition and its mechanism in zebrafish”Ecotoxicology and Environmental Safety239: 113614. doi:10.1016/j.ecoenv.2022.113614PMID 35567929S2CID 248728812.
  57. NIOSH Pocket Guide to Chemical Hazards. “#0449”National Institute for Occupational Safety and Health (NIOSH).
  58. “p-Nitroaniline”Immediately Dangerous to Life or Health Concentrations (IDLH)National Institute for Occupational Safety and Health (NIOSH).
  59. Booth, Gerald (2003-03-11). “Nitro Compounds, Aromatic”. In Wiley-VCH (ed.). Ullmann’s Encyclopedia of Industrial Chemistry (1 ed.). Wiley. doi:10.1002/14356007.a17_411ISBN 978-3-527-30385-4.]
  60. Mohrig, J.R.; Morrill, T.C.; Hammond, C.N.; Neckers, D.C. (1997). “Synthesis 5: Synthesis of the Dye Para Red from Aniline”Experimental Organic Chemistry. New York, NY: Freeman. pp. 456–467. Archived from the original on 2020-09-15. Retrieved 2007-07-18.
  61. Williamson, Kenneth L. (2002). Macroscale and Microscale Organic Experiments, Fourth EditionHoughton-MifflinISBN 0-618-19702-8.
  62. Starkey, E. B. (1939). “p-DINITROBENZENE”Organic Syntheses19: 40. doi:10.15227/orgsyn.019.0040.
  63. “p-NITROPHENYLARSONIC ACID”Organic Syntheses26: 60. 1946. doi:10.15227/orgsyn.026.0060.
  64. Shriner, R. L.; Horne, W. H.; Cox, R. F. B. (1934). “p-NITROPHENYL ISOCYANATE”Organic Syntheses14: 72. doi:10.15227/orgsyn.014.0072.
  65. “2,6-DIIODO-p-NITROANILINE”Organic Syntheses12: 28. 1932. doi:10.15227/orgsyn.012.0028.
  66. Poshkus, A. C.; Parker, J. A. (1970). “Studies on nitroaniline–sulfuric acid compositions: Aphrogenic pyrostats”Journal of Applied Polymer Science14 (8): 2049–2064. doi:10.1002/app.1970.070140813.
  67. Summerlin, Lee R.; Ealy, James L. (1988). “Experiment 100: Dehydration of p-Nitroaniline: Sanke and Puff”. Chemical Demonstrations: A Sourcebook for Teachers Volume 1 (2nd ed.). American Chemical Society. p. 171. ISBN 978-0-841-21481-1.
  68. “Carbon Snake: demonstrating the dehydration power of concentrated sulfuric acid”communities.acs.org. 2013-06-06. Retrieved 2022-01-31.
  69. Making a carbon snake with P-Nitroaniline, retrieved 2022-01-31
  70. “4-Nitroaniline”. St. Louis, Missouri: Sigma-Aldrich. December 18, 2020.
  71. https://en.wikipedia.org/wiki/C-41_process
  72. “Ethanol, 2-((4-amino-3-methylphenyl)ethylamino)-, sulfate (1:1) (salt)”U.S. National Center for Biotechnology Information. Retrieved 7 April 2019.
  73.  de Groot, Anton C. (July 2013). “Side-effects of henna and semi-permanent ‘black henna’ tattoos: a full review”Contact Dermatitis69 (1): 1–25. doi:10.1111/cod.12074PMID 23782354S2CID 140100016.
  74. “Temporary Tattoos & Henna/Mehndi”Food and Drug Administration. 3 March 2022.
  75. Kang, Ik-Joon; Lee, Mu-Hyoung (July 2006). “Quantification of para-phenylenediamine and heavy metals in henna dye”. Contact Dermatitis55 (1): 26–29. doi:10.1111/j.0105-1873.2006.00845.xPMID 16842550S2CID 22176978.
  76. Dron, P; Lafourcade, MP; Leprince, F; Nonotte-Varly, C; Van Der Brempt, X; Banoun, L; Sullerot, I; This-Vaissette, C; Parisot, L; Moneret-Vautrin, DA (June 2007). “Allergies associated with body piercing and tattoos: a report of the Allergy Vigilance Network”. European Annals of Allergy and Clinical Immunology39 (6): 189–192. PMID 17713170S2CID 7903601.
  77. Raupp, P; Hassan, JA; Varughese, M; Kristiansson, B (1 November 2001). “Henna causes life threatening haemolysis in glucose-6-phosphate dehydrogenase deficiency”Archives of Disease in Childhood85 (5): 411–412. doi:10.1136/adc.85.5.411PMC 1718961PMID 11668106.
  78. “§ 73.2190 Henna”Listing of Color Additives Exempt from CertificationFederal Register. 30 July 2009. Archived from the original on 5 November 2009. Retrieved 3 August 2009.
  79. “Accessdate.fda.gov”. Accessdata.fda.gov. Retrieved 30 April 2019.
  80. “Dangers of black henna”nhs.uk. 26 April 2018. Archived from the original on 8 August 2020. Retrieved 8 August 2020.
  81. Singh, M.; Jindal, S. K.; Kavia, Z. D.; Jangid, B. L.; Khem Chand (2005). “Traditional Methods of Cultivation and Processing of Henna. Henna, Cultivation, Improvement and Trade”. Henna: Cultivation, Improvement, and Trade. Jodhpur: Central Arid Zone Research Institute. pp. 21–24. OCLC 124036118.[page needed]
  82. “FDA.gov”Food and Drug Administration. Archived from the original on 2 January 2011. Retrieved 1 November 2010.
  83. “Rosemariearnold.com”. Archived from the original on 15 July 2011. Retrieved 1 November 2010.
  84. Van den Keybus, C.; Morren, M.-A.; Goossens, A. (September 2005). “Walking difficulties due to an allergic reaction to a temporary tattoo”. Contact Dermatitis53 (3): 180–181. doi:10.1111/j.0105-1873.2005.0407m.xPMID 16128770S2CID 28624688.
  85. Stante, M; Giorgini, S; Lotti, T (April 2006). “Allergic contact dermatitis from henna temporary tattoo”. Journal of the European Academy of Dermatology and Venereology20 (4): 484–486. doi:10.1111/j.1468-3083.2006.01483.xPMID 16643167S2CID 43067542.
  86. Jung, Peter; Sesztak-Greinecker, Gabriele; Wantke, Felix; Gotz, Manfred; Jarisch, Reinhart; Hemmer, Wolfgang (April 2006). “A painful experience: black henna tattoo causing severe, bullous contact dermatitis”. Contact Dermatitis54 (4): 219–220. doi:10.1111/j.0105-1873.2006.0775g.xPMID 16650103S2CID 43613761.
  87. Hassan, Inaam Bashir; Islam, Sherief I. A. M.; Alizadeh, Hussain; Kristensen, Jorgen; Kambal, Amr; Sonday, Shanaaz; Bernseen, Roos M. D. (21 July 2009). “Acute leukemia among the adult population of United Arab Emirates: an epidemiological study”. Leukemia & Lymphoma50 (7): 1138–1147. doi:10.1080/10428190902919184PMID 19557635S2CID 205701235.
  88. Sosted, Heidi; Johansen, Jeanne Duus; Andersen, Klaus Ejner; Menne, Torkil (February 2006). “Severe allergic hair dye reactions in 8 children”. Contact Dermatitis54 (2): 87–91. doi:10.1111/j.0105-1873.2006.00746.xPMID 16487280S2CID 39281376.
  89. Commission Directive 2009/134/EC of 28 October 2009 amending Council Directive 76/768/EEC concerning cosmetic products for the purposes of adapting Annex III thereto to technical progress
  90. Jacob, Sharon E.; Zapolanski, Tamar; Chayavichitsilp, Pamela; Connelly, Elizabeth Alvarez; Eichenfield, Lawrence F. (1 August 2008). “p-Phenylenediamine in Black Henna Tattoos”. Archives of Pediatrics & Adolescent Medicine162 (8): 790–2. doi:10.1001/archpedi.162.8.790PMID 18678815.
  91. “Black Henna”Florida Department of Health. 20 December 2018. Archived from the original on 29 March 2021. Retrieved 25 July 2020.
  92. “Health Canada alerts Canadians not to use ‘black henna’ temporary tattoo ink and paste containing PPD” (Press release). Health Canada. 11 August 2003. Archived from the original on 10 June 2008.
  93. Avnstorp, Christian; Rastogi, Suresh C.; Menne, Torkil (August 2002). “Acute fingertip dermatitis from a temporary tattoo and quantitative chemical analysis of the product”. Contact Dermatitis47 (2): 109–125. doi:10.1034/j.1600-0536.2002.470210_11.xPMID 12455547S2CID 34550567.
  94. Marcoux, Danielle; Couture‐Trudel, Pierre‐Marc; Riboulet‐Delmas, Gisèle; Sasseville, Denis (23 November 2002). “Sensitization to Para‐Phenylenediamine from a Streetside Temporary Tattoo”. Pediatric Dermatology19 (6): 498–502. doi:10.1046/j.1525-1470.2002.00218.xPMID 12437549S2CID 23543707.
  95. Onder, M (July 2003). “Temporary holiday ‘tattoos’ may cause lifelong allergic contact dermatitis when henna is mixed with PPD”. Journal of Cosmetic Dermatology2 (3–4): 126–130. doi:10.1111/j.1473-2130.2004.00083.xPMID 17163917S2CID 38957088.
  96. Onder, Meltem; Atahan, Cigdem Asena; Oztas, Pinar; Oztas, Murat Orhan (September 2001). “Temporary henna tattoo reactions in children”. International Journal of Dermatology40 (9): 577–579. doi:10.1046/j.1365-4362.2001.01248.xPMID 11737452S2CID 221816034.
  97. “PPD In ‘Black Henna’ Temporary Tattoos Is Not Safe”. Health Canada. 16 December 2008. Archived from the original on 24 April 2010. Retrieved 1 November 2010.
  98. Moro, Paola; Morina, Marco; Milani, Fabrizia; Pandolfi, Marco; Guerriero, Francesca; Bernardo, Luca (11 July 2016). “Sensitization and Clinically Relevant Allergy to Hair Dyes and Clothes from Black Henna Tattoos: Do People Know the Risk? An Uncommon Serious Case and a Review of the Literature”Cosmetics3 (3): 23. doi:10.3390/cosmetics3030023ISSN 2079-9284.
  99. Ahmadjian, VernonHale, Mason E. (1973). The Lichens. New York: Academic Press. ISBN 978-0-12-044950-7. pp. 636–637.
  100. Dahl, EilifKrog, Hildur (1973). Macrolichens of Denmark, Finland, Norway and Sweden. Universitetsforlaget. ISBN 9788200022626. p. 23.
  101. Sharnoff, Stephen (2014). A Field Guide to California Lichens. New Haven: Yale University Press. pp. 369–371. ISBN 978-0-300-19500-2OCLC 862053107.
  102. Le Pogam, Pierre; Herbette, Gaëtan; Boustie, Joël (19 December 2014). “Analysis of Lichen Metabolites, a Variety of Approaches”. Recent Advances in Lichenology. New Delhi: Springer India. pp. 229–261. doi:10.1007/978-81-322-2181-4_11ISBN 978-81-322-2180-7.

Categories

Leave a Reply

Your email address will not be published. Required fields are marked *

This site uses Akismet to reduce spam. Learn how your comment data is processed.