Sortilin
Sortilin (SORT1) is a protein that in humans is encoded by the SORT1 gene on chromosome 1. This protein is a type I membrane glycoprotein in the vacuolar protein sorting 10 protein (Vps10p) family of sorting receptors. While it is ubiquitously expressed in many tissues, sortilin is most abundant in the central nervous system.
- “Entrez Gene: SORT1 sortilin 1”.
- “BioGPS – your Gene Portal System”. biogps.org. Retrieved 2016-08-16.
- Andersen JL, Schrøder TJ, Christensen S, Strandbygård D, Pallesen LT, García-Alai MM, et al. (February 2014). “Identification of the first small-molecule ligand of the neuronal receptor sortilin and structure determination of the receptor-ligand complex”. Acta Crystallographica. Section D, Biological Crystallography. 70 (Pt 2): 451–460. doi:10.1107/S1399004713030149. PMC 3940197. PMID 24531479.
At the cellular level, sortilin functions in protein transport between the Golgi apparatus, endosome, lysosome, and plasma membrane, leading to its involvement in multiple biological processes such as glucose and lipid metabolism as well as neural development and cell death. Moreover, the function and role of sortilin is now emerging in several major human diseases such as hypertension, atherosclerosis, coronary artery disease, Alzheimer’s disease, and cancer.
- Nielsen MS, Madsen P, Christensen EI, Nykjaer A, Gliemann J, Kasper D, et al. (May 2001). “The sortilin cytoplasmic tail conveys Golgi-endosome transport and binds the VHS domain of the GGA2 sorting protein”. The EMBO Journal. 20 (9): 2180–2190. doi:10.1093/emboj/20.9.2180. PMC 125444. PMID 11331584.
- Huang G, Buckler-Pena D, Nauta T, Singh M, Asmar A, Shi J, et al. (October 2013). “Insulin responsiveness of glucose transporter 4 in 3T3-L1 cells depends on the presence of sortilin”. Molecular Biology of the Cell. 24 (19): 3115–3122. doi:10.1091/mbc.E12-10-0765. PMC 3784384. PMID 23966466.
- Patel KM, Strong A, Tohyama J, Jin X, Morales CR, Billheimer J, et al. (February 2015). “Macrophage sortilin promotes LDL uptake, foam cell formation, and atherosclerosis”. Circulation Research. 116 (5): 789–796. doi:10.1161/CIRCRESAHA.116.305811. PMC 4602371. PMID 25593281.
- Kjolby M, Nielsen MS, Petersen CM (April 2015). “Sortilin, encoded by the cardiovascular risk gene SORT1, and its suggested functions in cardiovascular disease”. Current Atherosclerosis Reports. 17 (4): 496. doi:10.1007/s11883-015-0496-7. PMID 25702058. S2CID 22361357.
- Nykjaer A, Lee R, Teng KK, Jansen P, Madsen P, Nielsen MS, et al. (February 2004). “Sortilin is essential for proNGF-induced neuronal cell death”. Nature. 427 (6977): 843–848. Bibcode:2004Natur.427..843N. doi:10.1038/nature02319. PMID 14985763. S2CID 4343450.
- Varzideh F, Jankauskas SS, Kansakar U, Mone P, Gambardella J, Santulli G (February 2022). “Sortilin drives hypertension by modulating sphingolipid/ceramide homeostasis and by triggering oxidative stress”. The Journal of Clinical Investigation. 132 (3). doi:10.1172/JCI156624. PMC 8803317. PMID 35104807.
- Goettsch C, Hutcheson JD, Aikawa M, Iwata H, Pham T, Nykjaer A, et al. (April 2016). “Sortilin mediates vascular calcification via its recruitment into extracellular vesicles”. The Journal of Clinical Investigation. 126 (4): 1323–1336. doi:10.1172/JCI80851. PMC 4811143. PMID 26950419.
- Roselli S, Pundavela J, Demont Y, Faulkner S, Keene S, Attia J, et al. (April 2015). “Sortilin is associated with breast cancer aggressiveness and contributes to tumor cell adhesion and invasion”. Oncotarget. 6 (12): 10473–10486. doi:10.18632/oncotarget.3401. PMC 4496368. PMID 25871389.
- Wilson CM, Naves T, Al Akhrass H, Vincent F, Melloni B, Bonnaud F, et al. (2016-02-01). “A new role under sortilin’s belt in cancer”. Communicative & Integrative Biology. 9 (1): e1130192. doi:10.1080/19420889.2015.1130192. PMC 4802778. PMID 27066187.
The SORT1 gene also contains one of 27 loci associated with increased risk of coronary artery disease.
- Mega JL, Stitziel NO, Smith JG, Chasman DI, Caulfield M, Devlin JJ, et al. (June 2015). “Genetic risk, coronary heart disease events, and the clinical benefit of statin therapy: an analysis of primary and secondary prevention trials”. Lancet. 385 (9984): 2264–2271. doi:10.1016/S0140-6736(14)61730-X. PMC 4608367. PMID 25748612.
Structure
Gene
The SORT1 gene resides on chromosome 1 at the band 1p13.3 and includes 23 exons. This gene encodes 2 isoforms through alternative splicing.
- “SORT1 – Sortilin precursor – Homo sapiens (Human) – SORT1 gene & protein”. www.uniprot.org. Retrieved 2016-08-16.
- “Entrez Gene: SORT1 sortilin 1”.
Protein
Sortilin is a member of the Vps10p sorting receptor family. Vacuolar protein sorting 10 protein domain family involves five transmembrane proteins with structural similarities:
- SorCS1
- SORCS1 (Sortilin Related VPS10 Domain Containing Receptor 1) is a Protein Coding gene. Diseases associated with SORCS1 include Alzheimer Disease 6 and Narcolepsy. Among its related pathways are Ectoderm differentiation. Gene Ontology (GO) annotations related to this gene include neuropeptide receptor activity. An important paralog of this gene is SORCS3.
- https://www.genecards.org/cgi-bin/carddisp.pl?gene=SORCS1
- Articles from 2001 – Present PubMed
- SORCS1 (Sortilin Related VPS10 Domain Containing Receptor 1) is a Protein Coding gene. Diseases associated with SORCS1 include Alzheimer Disease 6 and Narcolepsy. Among its related pathways are Ectoderm differentiation. Gene Ontology (GO) annotations related to this gene include neuropeptide receptor activity. An important paralog of this gene is SORCS3.
- SorCS2
- SorCS2 specifically has critical roles in neuronal viability and function. Single nucleotide polymorphisms (SNPs) in the protein has been associated with a range of diseases including attention-deficit hyperactivity disorder (ADHD),bipolar disorders, and schizophrenia, and the receptor family has also been associated with Alzheimer’s disease and type 2 diabetes.
- Alemany, Silvia; Ribasés, Marta; Vilor-Tejedor, Natàlia; Bustamante, Mariona; Sánchez-Mora, Cristina; Bosch, Rosa; Richarte, Vanesa; Cormand, Bru; Casas, Miguel (2015-07-14). “New suggestive genetic loci and biological pathways for attention function in adult attention-deficit/hyperactivity disorder“. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics. 168 (6): 459–470. doi:10.1002/ajmg.b.32341. ISSN 1552-4841. PMID 26174813. S2CID 38488226.
- Baum, A E; Akula, N; Cabanero, M; Cardona, I; Corona, W; Klemens, B; Schulze, T G; Cichon, S; Rietschel, M (2007-05-08). “A genome-wide association study implicates diacylglycerol kinase eta (DGKH) and several other genes in the etiology of bipolar disorder“. Molecular Psychiatry. 13 (2): 197–207. doi:10.1038/sj.mp.4002012. ISSN 1359-4184. PMC 2527618. PMID 17486107.
- Christoforou, A; McGhee, K A; Morris, S W; Thomson, P A; Anderson, S; McLean, A; Torrance, H S; Le Hellard, S; Pickard, B S (2010-03-30). “Convergence of linkage, association and GWAS findings for a candidate region for bipolar disorder and schizophrenia on chromosome 4p“. Molecular Psychiatry. 16 (3): 240–242. doi:10.1038/mp.2010.25. ISSN 1359-4184. PMID 20351716. S2CID 10244703.
- Reitz, Christiane; Tokuhiro, Shinya; Clark, Lorraine N.; Conrad, Christopher; Vonsattel, Jean-Paul; Hazrati, Lili-Naz; Palotás, András; Lantigua, Raphael; Medrano, Martin (January 2011). “SORCS1 alters amyloid precursor protein processing and variants may increase Alzheimer’s disease risk“. Annals of Neurology. 69 (1): 47–64. doi:10.1002/ana.22308. ISSN 0364-5134. PMC 3086759. PMID 21280075.
- Goodarzi, Mark O.; Lehman, Donna M.; Taylor, Kent D.; Guo, Xiuqing; Cui, Jinrui; Quiñones, Manuel J.; Clee, Susanne M.; Yandell, Brian S.; Blangero, John (2007-07-01). “SORCS1: A Novel Human Type 2 Diabetes Susceptibility Gene Suggested by the Mouse“. Diabetes. 56 (7): 1922–1929. doi:10.2337/db06-1677. ISSN 0012-1797. PMID 17426289.
- SorCS2 and related proteins in the Vps10p domain family are predominantly found in neurons in the brain, but are also present in other tissues. In terms of brain localization SorCS2 has been found predominantly in thalamus, floor plate of the midbrain and spinal cord, ventricular zones of hippocampal and accumbens areas, meninges, and Schwann cells. The localization is distinct from the other Vps10p receptor sortilin SorCS2 has further been found in tissues that are not brain related in smaller amounts e.g. in structures of mesodermal origin such as adipose tissue, striated muscle tissues, and developing bone as well as connective tissue such as the dermis, submucosal, and submesothelial tissues in the gut, and the bronchial system. Although the presence in these tissues are largely uninvestigated, they still form the basis for further specific functions in non-brain tissue.
- Boggild, Simon; Molgaard, Simon; Glerup, Simon; Nyengaard, Jens Randel (2016-03-10). “Spatiotemporal patterns of sortilin and SorCS2 localization during organ development“. BMC Cell Biology. 17 (1): 8. doi:10.1186/s12860-016-0085-9. ISSN 1471-2121. PMC 4785631. PMID 26964886.
- Boggild, Simon; Molgaard, Simon; Glerup, Simon; Nyengaard, Jens Randel (2018-02-20). “Highly segregated localization of the functionally related vps10p receptors sortilin and SorCS2 during neurodevelopment“. Journal of Comparative Neurology. 526 (8): 1267–1286. doi:10.1002/cne.24403. ISSN 0021-9967. PMID 29405286. S2CID 46869016.
- All members of the Vps10p protein family are multiligand receptors. They can take part in cellular trafficking and signaling through ligand binding in response to cellular conditions. Examples of ligands are neurotrophic factors, amyloid precursor protein (APP), lipoproteins, and cytokines. In addition to depending on the cellular context, the affinity for specific ligands can also be modulated by the monomer/dimer ratio.
- Willnow, Thomas E.; Petersen, Claus M.; Nykjaer, Anders (2008-11-12). “VPS10P-domain receptors — regulators of neuronal viability and function“. Nature Reviews Neuroscience. 9 (12): 899–909. doi:10.1038/nrn2516. ISSN 1471-003X. PMID 19002190. S2CID 25776764.
- Willnow, Thomas E; Kjølby, Mads; Nykjaer, Anders (April 2011). “Sortilins: new players in lipoprotein metabolism“. Current Opinion in Lipidology. 22 (2): 79–85. doi:10.1097/mol.0b013e3283416f2b. ISSN 0957-9672. PMID 21124217. S2CID 205829395.
- Nykjaer, Anders; Lee, Ramee; Teng, Kenneth K.; Jansen, Pernille; Madsen, Peder; Nielsen, Morten S.; Jacobsen, Christian; Kliemannel, Marco; Schwarz, Elisabeth (2004-02-26). “Sortilin is essential for proNGF-induced neuronal cell death“. Nature. 427 (6977): 843–848. Bibcode:2004Natur.427..843N. doi:10.1038/nature02319. ISSN 0028-0836. PMID 14985763. S2CID 4343450.
- Larsen, Jakob Vejby; Hansen, Maria; Møller, Bjarne; Madsen, Peder; Scheller, Jürgen; Nielsen, Morten; Petersen, Claus Munck (2010-09-01). “Sortilin Facilitates Signaling of Ciliary Neurotrophic Factor and Related Helical Type 1 Cytokines Targeting the gp130/Leukemia Inhibitory Factor Receptor β Heterodimer“. Molecular and Cellular Biology. 30 (17): 4175–4187. doi:10.1128/MCB.00274-10. ISSN 0270-7306. PMC 2937557. PMID 20584990.
- Glerup, S; Bolcho, U; Mølgaard, S; Bøggild, S; Vaegter, C B; Smith, A H; Nieto-Gonzalez, J L; Ovesen, P L; Pedersen, L F (2016-07-26). “SorCS2 is required for BDNF-dependent plasticity in the hippocampus“. Molecular Psychiatry. 21 (12): 1740–1751. doi:10.1038/mp.2016.108. ISSN 1359-4184. PMID 27457814. S2CID 21763820.
- Glerup, S.; Nykjaer, A.; Vaegter, C. B. (2014), “Sortilins in Neurotrophic Factor Signaling“, Neurotrophic Factors, Handbook of Experimental Pharmacology, Springer Berlin Heidelberg, vol. 220, pp. 165–189, doi:10.1007/978-3-642-45106-5_7, ISBN 9783642451058, PMID 24668473
- Januliene, Dovile; Manavalan, Arulmani; Ovesen, Peter Lund; Pedersen, Karen-Marie; Thirup, Søren; Nykjær, Anders; Moeller, Arne (September 2017). “Hidden Twins: SorCS Neuroreceptors Form Stable Dimers“. Journal of Molecular Biology. 429 (19): 2907–2917. doi:10.1016/j.jmb.2017.08.006. ISSN 0022-2836. PMID 28827148.
- BDNF-dependent plasticity Hippocampal N-methyl-D-aspartate (NMDA) receptor-dependent synaptic plasticity is found to be deficient at least in SorCS2 mutant mice, strongly suggesting a link between the two. SorCS2 deficient mice also show decreased long-term memory, higher tendency to take risks, and to have a more stimuli seeking behaviour than corresponding SorCS2 normal mice. The decrease in plasticity is attributed to the fact that SorCS2 forms a complex with p75NTR, a neurotrophin receptor which interacts with proBDNF (brain-derived neurotrophic factor) and TrkB (BDNF receptor tyrosine kinase) inside neurons in the hippocampal region of the brain to modulate synapse depression and potentiation respectively. Thus, SorCS2 could be the link between BDNF/proBDNF signaling and mental disorders. Deficiency in this signaling can affect the strengthening and weakening of synapses, that is, neuronal plasticity.
- Glerup, S; Bolcho, U; Mølgaard, S; Bøggild, S; Vaegter, C B; Smith, A H; Nieto-Gonzalez, J L; Ovesen, P L; Pedersen, L F (2016-07-26). “SorCS2 is required for BDNF-dependent plasticity in the hippocampus“. Molecular Psychiatry. 21 (12): 1740–1751. doi:10.1038/mp.2016.108. ISSN 1359-4184. PMID 27457814. S2CID 21763820.
- Alcohol withdrawal When trying to stop excessive alcohol consumption alcohol withdrawal (AW) is physiological responses that in some cases can cause life-threatening seizures. SorCS2 has been associated with the severity of AW in genome analysis of European American test subjects, although no such connection could be made in African American samples. A specific SorCS2 risk haplotype disrupts a transcription factor (TF) binding site in a stress hormone-modulated regulatory enhancer element with activity in human hippocampus. This region of the brain is already known for its association with AW. This increases the severity of AW in patients with alcoholism. Exposure to ethanol and glucocorticoids have been found to act as up-regulators of SorCS2, causing worsening of the problems if the risk variant of SorCS2 is present.
- Smith, Andrew H.; Ovesen, Peter L.; Skeldal, Sune; Yeo, Seungeun; Jensen, Kevin P.; Olsen, Ditte; Diazgranados, Nancy; Zhao, Hongyu; Farrer, Lindsay A. (2018-10-25). “Risk Locus Identification Ties Alcohol Withdrawal Symptoms to SORCS2“. Alcoholism: Clinical and Experimental Research. 42 (12): 2337–2348. doi:10.1111/acer.13890. ISSN 0145-6008. PMC 6317871. PMID 30252935.
- Articles 2001-Present PubMed
- SorCS2 specifically has critical roles in neuronal viability and function. Single nucleotide polymorphisms (SNPs) in the protein has been associated with a range of diseases including attention-deficit hyperactivity disorder (ADHD),bipolar disorders, and schizophrenia, and the receptor family has also been associated with Alzheimer’s disease and type 2 diabetes.
- SorCS3
- SORCS3 (Sortilin Related VPS10 Domain Containing Receptor 3) is a Protein Coding gene. Diseases associated with SORCS3 include Attention Deficit-Hyperactivity Disorder. Gene Ontology (GO) annotations related to this gene include neuropeptide receptor activity. An important paralog of this gene is SORCS1.
- https://www.genecards.org/cgi-bin/carddisp.pl?gene=SORCS3
- Articles 2001-Present PubMed
- SORCS3 (Sortilin Related VPS10 Domain Containing Receptor 3) is a Protein Coding gene. Diseases associated with SORCS3 include Attention Deficit-Hyperactivity Disorder. Gene Ontology (GO) annotations related to this gene include neuropeptide receptor activity. An important paralog of this gene is SORCS1.
- SorLA (sorting protein-related receptor with A-type repeats)
- SORL1 (also known as SORLA, SORLA1, or LR11; SORLA or SORL1 are used, often interchangeably, for the protein product of the SORL1 gene) is a 2214 residue type I transmembrane protein receptor that binds certain peptides and integral membrane protein cargo in the endolysosomal pathway and delivers them for sorting to the retromer multi protein complex; the gene is predominantly expressed in the central nervous system. Endosomal traffic jams linked to SORL1 retromer dysfunction are the earliest cellular pathology in both familial and the more common sporadic Alzheimer’s patients.
- Small SA, Petsko GA (March 2015). “Retromer in Alzheimer disease, Parkinson disease and other neurological disorders“. Nature Reviews. Neuroscience. 16 (3): 126–132. doi:10.1038/nrn3896. PMID 25669742. S2CID 5166260.
- Szabo MP, Mishra S, Knupp A, Young JE (January 2022). “The role of Alzheimer’s disease risk genes in endolysosomal pathways“. Neurobiology of Disease. 162: 105576. doi:10.1016/j.nbd.2021.105576. PMC 9071255. PMID 34871734.
- Cataldo AM, Peterhoff CM, Troncoso JC, Gomez-Isla T, Hyman BT, Nixon RA (July 2000). “Endocytic pathway abnormalities precede amyloid beta deposition in sporadic Alzheimer’s disease and Down syndrome: differential effects of APOE genotype and presenilin mutations“. The American Journal of Pathology. 157 (1): 277–286. doi:10.1016/S0002-9440(10)64538-5. PMC 1850219. PMID 10880397.
- Small SA, Simoes-Spassov S, Mayeux R, Petsko GA (October 2017). “Endosomal Traffic Jams Represent a Pathogenic Hub and Therapeutic Target in Alzheimer’s Disease“. Trends in Neurosciences. 40 (10): 592–602. doi:10.1016/j.tins.2017.08.003. PMC 5654621. PMID 28962801.
- Retromer regulates protein trafficking from the early endosome either back to the trans-Golgi (retrograde) or back to the plasma membrane (direct recycling). Two forms of retromer are known: the VPS26A retromer and the VPS26B retromer, the latter being dedicated to direct recycling in the CNS. SORL1 is a multi domain single-pass membrane protein whose large ectodomain resides primarily in endosomal tubules, being connected by its transmembrane helical domain and cytoplasmic tail to the VPS26 retromer subunit on the outer endosomal membrane.
- Carosi JM, Denton D, Kumar S, Sargeant TJ (2023). “Receptor Recycling by Retromer“. Molecular and Cellular Biology. 43 (7): 317–334. doi:10.1080/10985549.2023.2222053. PMC 10348044. PMID 37350516.
- Simoes S, Guo J, Buitrago L, Qureshi YH, Feng X, Kothiya M, et al. (December 2021). “Alzheimer’s vulnerable brain region relies on a distinct retromer core dedicated to endosomal recycling“. Cell Reports. 37 (13): 110182. doi:10.1016/j.celrep.2021.110182. PMC 8792909. PMID 34965419.
- Lane RF, St George-Hyslop P, Hempstead BL, Small SA, Strittmatter SM, Gandy S (October 2012). “Vps10 family proteins and the retromer complex in aging-related neurodegeneration and diabetes“. The Journal of Neuroscience. 32 (41): 14080–14086. doi:10.1523/JNEUROSCI.3359-12.2012. PMC 3576841. PMID 23055476.
- The age at onset of SORL1 mutation carriers varies, which has complicated segregation analyses. Nevertheless, protein−truncating variants (PTVs) are observed almost exclusively in AD patients, indicating that SORL1 is haploinsufficient. However, most variants are rare missense variants that can be benign, or risk−increasing, but recent reports have indicated that some variants are causative for disease. In fact, specific missense variants have been observed only in AD cases, some of which may have a dominant negative effect.
- Holstege, Henne; van der Lee, Sven J.; Hulsman, Marc; Wong, Tsz Hang; van Rooij, Jeroen GJ; Weiss, Marjan; Louwersheimer, Eva; Wolters, Frank J.; Amin, Najaf; Uitterlinden, André G.; Hofman, Albert; Ikram, M. Arfan; van Swieten, John C.; Meijers-Heijboer, Hanne; van der Flier, Wiesje M. (2017). “Characterization of pathogenic SORL1 genetic variants for association with Alzheimer’s disease: a clinical interpretation strategy“. European Journal of Human Genetics. 25 (8): 973–981. doi:10.1038/ejhg.2017.87. ISSN 1476-5438. PMC 5567154. PMID 28537274.
- Verheijen, Jan; Van den Bossche, Tobi; van der Zee, Julie; Engelborghs, Sebastiaan; Sanchez-Valle, Raquel; Lladó, Albert; Graff, Caroline; Thonberg, Håkan; Pastor, Pau; Ortega-Cubero, Sara; Pastor, Maria A.; Benussi, Luisa; Ghidoni, Roberta; Binetti, Giuliano; Clarimon, Jordi (2016). “A comprehensive study of the genetic impact of rare variants in SORL1 in European early-onset Alzheimer’s disease“. Acta Neuropathologica. 132 (2): 213–224. doi:10.1007/s00401-016-1566-9. ISSN 1432-0533. PMC 4947104. PMID 27026413.
- Fazeli E, Child DD, Bucks SA, Stovarsky M, Edwards G, Yu CE, et al. (July 2023). “A familial missense variant in the AD gene SORL1 impairs its maturation and endosomal sorting“. bioRxiv: 2023.07.01.547348. doi:10.1101/2023.07.01.547348. PMC 10349966. PMID 37461597.
- Jensen AM, Raska J, Fojtik P, Monti G, Lunding M, Vochyanova S, et al. (2023). “The SORL1 p. Y1816C variant causes impaired endosomal dimerization and autosomal dominant Alzheimer’s disease“. medRxiv 10.1101/2023.07.09.23292253v1.
- Holstege, Henne; De Waal, Matthijs W. J.; Tesi, Niccolo; Van Der Lee, Sven J.; ADES-consortium; ADSP consortium; StEP-AD consortium; Knight-ADRC; UCSF/NYGC/UAB (2023). “Effect of prioritized SORL1 missense variants supports clinical consideration for familial Alzheimer’s Disease“ (Report). Genetic and Genomic Medicine. doi:10.1101/2023.07.13.23292622.
- A significant reduction in SORL1 (LR11) expression has been found in brain tissue of Alzheimer’s disease patients. Protein levels of retromer subunits have also been found to be reduced in the transentorhinal cortex of sporadic Alzheimer’s patients, the brain region where Alzheimer’s disease begins. SORL1-VPS26B retromer has been linked with regulation of amyloid precursor protein (APP), faulty processing of which is implicated in Alzheimer’s. SORL1 cargo includes APP and its amyloid forming peptide cleavage products, as well as the important glutamate neurotransmitter receptor subunit GRIA1. SORL1 binds these and other cargo proteins and delivers them to the retromer, an assembly of multiple gene products that is the master regulator of protein trafficking from the early endosome. Studies by a group of international researchers support the proposition that SORL1 plays a part in seniors developing Alzheimer’s disease, the findings being significant across racial and ethnic strata. SORL1 is now considered the fourth causal Alzheimer’s gene, the others being APP and the two presenilins PSEN1 and PSEN2 and it is the only one also genetically linked to the common, late-onset sporadic form of the disease. Defective SORL1-retromer protein recycling has been proposed as the “fire” of sporadic Alzheimer’s disease that drives production of amyloid and tau tangle “smoke”, thereby resolving the apparent paradoxical failure of treatments aimed at the latter two to completely arrest the disease.
- Scherzer CR, Offe K, Gearing M, Rees HD, Fang G, Heilman CJ, et al. (August 2004). “Loss of apolipoprotein E receptor LR11 in Alzheimer disease“. Archives of Neurology. 61 (8): 1200–1205. doi:10.1001/archneur.61.8.1200. PMID 15313836. S2CID 22176694.
- Small SA, Kent K, Pierce A, Leung C, Kang MS, Okada H, et al. (December 2005). “Model-guided microarray implicates the retromer complex in Alzheimer’s disease“. Annals of Neurology. 58 (6): 909–919. doi:10.1002/ana.20667. PMID 16315276. S2CID 34144181.
- Andersen OM, Reiche J, Schmidt V, Gotthardt M, Spoelgen R, Behlke J, et al. (September 2005). “Neuronal sorting protein-related receptor sorLA/LR11 regulates processing of the amyloid precursor protein“. Proceedings of the National Academy of Sciences of the United States of America. 102 (38): 13461–13466. Bibcode:2005PNAS..10213461A. doi:10.1073/pnas.0503689102. PMC 1224625. PMID 16174740.
- Jensen AM, Kitago Y, Fazeli E, Vægter CB, Small SA, Petsko GA, Andersen OM (January 2023). “Dimerization of the Alzheimer’s disease pathogenic receptor SORLA regulates its association with retromer“. Proceedings of the National Academy of Sciences of the United States of America. 120 (4): e2212180120. Bibcode:2023PNAS..12012180J. doi:10.1073/pnas.2212180120. PMC 9942828. PMID 36652482.
- Seaman MN (July 2021). “The Retromer Complex: From Genesis to Revelations“. Trends in Biochemical Sciences. 46 (7): 608–620. doi:10.1016/j.tibs.2020.12.009. PMID 33526371. S2CID 231753314.
- Rogaeva E, Meng Y, Lee JH, Gu Y, Kawarai T, Zou F, et al. (February 2007). “The neuronal sortilin-related receptor SORL1 is genetically associated with Alzheimer disease“. Nature Genetics. 39 (2): 168–177. doi:10.1038/ng1943. PMC 2657343. PMID 17220890.
- Andrade-Guerrero J, Santiago-Balmaseda A, Jeronimo-Aguilar P, Vargas-Rodríguez I, Cadena-Suárez AR, Sánchez-Garibay C, et al. (February 2023). “Alzheimer’s Disease: An Updated Overview of Its Genetics“. International Journal of Molecular Sciences. 24 (4): 3754. doi:10.3390/ijms24043754. PMC 9966419. PMID 36835161
- Wightman DP, Jansen IE, Savage JE, Shadrin AA, Bahrami S, Holland D, et al. (September 2021). “A genome-wide association study with 1,126,563 individuals identifies new risk loci for Alzheimer’s disease“. Nature Genetics. 53 (9): 1276–1282. doi:10.1038/s41588-021-00921-z. PMC 10243600. PMID 34493870.
- Small SA, Petsko GA (2020). “Endosomal recycling reconciles the Alzheimer’s disease paradox“. Science Translational Medicine. 12 (572): eabb1717. doi:10.1126/scitranslmed.abb1717. PMC 8025181. PMID 33268506.
- Jensen AM, Raska J, Fojtik P, Monti G, Lunding M, Vochyanova S, et al. (2023). “The SORL1 p. Y1816C variant causes impaired endosomal dimerization and autosomal dominant Alzheimer’s disease“. medRxiv 10.1101/2023.07.09.23292253v1
- Simoes S, Guo J, Buitrago L, Qureshi YH, Feng X, Kothiya M, et al. (December 2021). “Alzheimer’s vulnerable brain region relies on a distinct retromer core dedicated to endosomal recycling“. Cell Reports. 37 (13): 110182. doi:10.1016/j.celrep.2021.110182. PMC 8792909. PMID 34965419.
- what is this bullshit…busywork
- Articles 1996-Present PubMed
- SORL1 (also known as SORLA, SORLA1, or LR11; SORLA or SORL1 are used, often interchangeably, for the protein product of the SORL1 gene) is a 2214 residue type I transmembrane protein receptor that binds certain peptides and integral membrane protein cargo in the endolysosomal pathway and delivers them for sorting to the retromer multi protein complex; the gene is predominantly expressed in the central nervous system. Endosomal traffic jams linked to SORL1 retromer dysfunction are the earliest cellular pathology in both familial and the more common sporadic Alzheimer’s patients.
- and sortilin (you are here)
- Articles 1997-Present PubMed
- Januliene, Dovile; Manavalan, Arulmani; Ovesen, Peter Lund; Pedersen, Karen-Marie; Thirup, Søren; Nykjær, Anders; Moeller, Arne (September 2017). “Hidden Twins: SorCS Neuroreceptors Form Stable Dimers”. Journal of Molecular Biology. 429 (19): 2907–2917. doi:10.1016/j.jmb.2017.08.006. ISSN 0022-2836. PMID 28827148.
Crystallization studies of the protein reveal that, when complexed with the ligand neurotensin, the Vps10 ectodomain of sortilin forms a ten-bladed beta-propeller structure with an inner tunnel that contains multiple ligand binding sites. To prevent premature ligand binding during its synthesis, the precursor protein of sortilin contains a 44-amino acid pro-peptide that serves as a chaperone for the Vps10p domain. In addition, two hydrophobic loops have been detected in this domain and act to anchor the protein in the cell membrane. Sortilin has also been shown to undergo a conformational change and form a protein dimer in acidic conditions similar to ones found in the endosome, indicating a double mechanism for low pH-induced ligand release and possibly signaling towards recycling of the receptor.
- Andersen JL, Schrøder TJ, Christensen S, Strandbygård D, Pallesen LT, García-Alai MM, et al. (February 2014). “Identification of the first small-molecule ligand of the neuronal receptor sortilin and structure determination of the receptor-ligand complex”. Acta Crystallographica. Section D, Biological Crystallography. 70 (Pt 2): 451–460. doi:10.1107/S1399004713030149. PMC 3940197. PMID 24531479.
- Quistgaard EM, Madsen P, Grøftehauge MK, Nissen P, Petersen CM, Thirup SS (January 2009). “Ligands bind to Sortilin in the tunnel of a ten-bladed beta-propeller domain”. Nature Structural & Molecular Biology. 16 (1): 96–98. doi:10.1038/nsmb.1543. PMID 19122660. S2CID 205522786.
- Nykjaer A, Willnow TE (April 2012). “Sortilin: a receptor to regulate neuronal viability and function”. Trends in Neurosciences. 35 (4): 261–270. doi:10.1016/j.tins.2012.01.003. PMID 22341525. S2CID 28152980.
- Quistgaard EM, Grøftehauge MK, Madsen P, Pallesen LT, Christensen B, Sørensen ES, et al. (September 2014). “Revisiting the structure of the Vps10 domain of human sortilin and its interaction with neurotensin”. Protein Science. 23 (9): 1291–1300. doi:10.1002/pro.2512. PMC 4243999. PMID 24985322.
- Leloup N, Lössl P, Meijer DH, Brennich M, Heck AJ, Thies-Weesie DM, Janssen BJ (November 2017). “Low pH-induced conformational change and dimerization of sortilin triggers endocytosed ligand release”. Nature Communications. 8 (1): 1708. Bibcode:2017NatCo…8.1708L. doi:10.1038/s41467-017-01485-5. PMC 5700061. PMID 29167428.
Function
In humans, sortilin is expressed over a wide range of cell types and tissues such as the brain, spinal cord, adrenal gland, thyroid, B-lymphocytes, adipocytes, skeletal muscle, and heart.
- Schmidt V, Willnow TE (February 2016). “Protein sorting gone wrong–VPS10P domain receptors in cardiovascular and metabolic diseases”. Atherosclerosis. 245: 194–199. doi:10.1016/j.atherosclerosis.2015.11.027. PMID 26724530.
As a sorting receptor on the cell surface and on the endoplasmic reticulum-Golgi apparatus within the cell, sortilin is involved in the transport of a wide variety of intracellular proteins between the trans-Golgi network, endosome, lysosome, and secretory granules, as well as the plasma membrane. This molecular function enables sortilin to participate in various biological processes, including the transport of GLUT4 to the plasma membrane of fat and skeletal muscle cells in response to insulin.
- Nielsen MS, Madsen P, Christensen EI, Nykjaer A, Gliemann J, Kasper D, et al. (May 2001). “The sortilin cytoplasmic tail conveys Golgi-endosome transport and binds the VHS domain of the GGA2 sorting protein”. The EMBO Journal. 20 (9): 2180–2190. doi:10.1093/emboj/20.9.2180. PMC 125444. PMID 11331584.
- Huang G, Buckler-Pena D, Nauta T, Singh M, Asmar A, Shi J, et al. (October 2013). “Insulin responsiveness of glucose transporter 4 in 3T3-L1 cells depends on the presence of sortilin”. Molecular Biology of the Cell. 24 (19): 3115–3122. doi:10.1091/mbc.E12-10-0765. PMC 3784384. PMID 23966466.
It also mediates the interaction between proNGF and the p75NTR:sortilin complex by acting as a co-receptor to signal cell death. The fine regulation of the brain-derived neurotrophic factor (BDNF) by sortilin is required for both neuronal and tumor cell survival.
- Nykjaer A, Lee R, Teng KK, Jansen P, Madsen P, Nielsen MS, et al. (February 2004). “Sortilin is essential for proNGF-induced neuronal cell death”. Nature. 427 (6977): 843–848. Bibcode:2004Natur.427..843N. doi:10.1038/nature02319. PMID 14985763. S2CID 4343450.
- Nykjaer A, Willnow TE (April 2012). “Sortilin: a receptor to regulate neuronal viability and function”. Trends in Neurosciences. 35 (4): 261–270. doi:10.1016/j.tins.2012.01.003. PMID 22341525. S2CID 28152980.
- Akil H, Perraud A, Mélin C, Jauberteau MO, Mathonnet M (2011-01-01). “Fine-tuning roles of endogenous brain-derived neurotrophic factor, TrkB and sortilin in colorectal cancer cell survival”. PLOS ONE. 6 (9): e25097. Bibcode:2011PLoSO…625097A. doi:10.1371/journal.pone.0025097. PMC 3180371. PMID 21966426.
Moreover, sortilin has been implicated in LDL–cholesterol metabolism, VLDL secretion, and PCSK9 secretion, and thus plays a role in the development of atherosclerotic lesions. It modulates lipid metabolism in adipocytes, hepatocytes, and macrophages.
- Su X, Chen L, Chen X, Dai C, Wang B (June 2022). “Emerging roles of sortilin in affecting the metabolism of glucose and lipid profiles”. Bosnian Journal of Basic Medical Sciences. 22 (3): 340–352. doi:10.17305/bjbms.2021.6601. PMC 9162750. PMID 34784266.
- Patel KM, Strong A, Tohyama J, Jin X, Morales CR, Billheimer J, et al. (February 2015). “Macrophage sortilin promotes LDL uptake, foam cell formation, and atherosclerosis”. Circulation Research. 116 (5): 789–796. doi:10.1161/CIRCRESAHA.116.305811. PMC 4602371. PMID 25593281.
- Kjolby M, Nielsen MS, Petersen CM (April 2015). “Sortilin, encoded by the cardiovascular risk gene SORT1, and its suggested functions in cardiovascular disease”. Current Atherosclerosis Reports. 17 (4): 496. doi:10.1007/s11883-015-0496-7. PMID 25702058. S2CID 22361357.
Other processes involving sortilin include endocytosis, negative regulation of lipoprotein lipase activity, myotube differentiation, ossification, and regulation of gene expression.
- Nielsen MS, Jacobsen C, Olivecrona G, Gliemann J, Petersen CM (March 1999). “Sortilin/neurotensin receptor-3 binds and mediates degradation of lipoprotein lipase”. The Journal of Biological Chemistry. 274 (13): 8832–8836. doi:10.1074/jbc.274.13.8832. PMID 10085125.
- Ariga M, Nedachi T, Katagiri H, Kanzaki M (April 2008). “Functional role of sortilin in myogenesis and development of insulin-responsive glucose transport system in C2C12 myocytes”. The Journal of Biological Chemistry. 283 (15): 10208–10220. doi:10.1074/jbc.M710604200. PMID 18258592.
- Maeda S, Nobukuni T, Shimo-Onoda K, Hayashi K, Yone K, Komiya S, Inoue I (October 2002). “Sortilin is upregulated during osteoblastic differentiation of mesenchymal stem cells and promotes extracellular matrix mineralization”. Journal of Cellular Physiology. 193 (1): 73–79. doi:10.1002/jcp.10151. PMID 12209882. S2CID 32754981.
- Nielsen MS, Madsen P, Christensen EI, Nykjaer A, Gliemann J, Kasper D, et al. (May 2001). “The sortilin cytoplasmic tail conveys Golgi-endosome transport and binds the VHS domain of the GGA2 sorting protein”. The EMBO Journal. 20 (9): 2180–2190. doi:10.1093/emboj/20.9.2180. PMC 125444. PMID 11331584.
Clinical significance
Given its function in facilitating lysosomal degradation or recycling of ligands in lipid metabolism and the neural system, sortilin likely plays an important role in the underlying mechanisms and pathophysiology of atherogenesis and coronary artery disease, as well as in neurological disorders. For example, sortilin has been identified as an important receptor for brain apolipoprotein E (APOE) metabolism, which is implicated in the underlying mechanisms of Alzheimer’s disease.
- Strong A, Rader DJ (June 2012). “Sortilin as a regulator of lipoprotein metabolism”. Current Atherosclerosis Reports. 14 (3): 211–218. doi:10.1007/s11883-012-0248-x. PMC 7089359. PMID 22538429.
- Zhong LY, Cayabyab FS, Tang CK, Zheng XL, Peng TH, Lv YC (September 2016). “Sortilin: A novel regulator in lipid metabolism and atherogenesis”. Clinica Chimica Acta; International Journal of Clinical Chemistry. 460: 11–17. doi:10.1016/j.cca.2016.06.013. PMID 27312323.
- Kjolby M, Andersen OM, Breiderhoff T, Fjorback AW, Pedersen KM, Madsen P, et al. (September 2010). “Sort1, encoded by the cardiovascular risk locus 1p13.3, is a regulator of hepatic lipoprotein export”. Cell Metabolism. 12 (3): 213–223. doi:10.1016/j.cmet.2010.08.006. PMID 20816088.
- Carlo AS (2013-10-01). “Sortilin, a novel APOE receptor implicated in Alzheimer disease”. Prion. 7 (5): 378–382. doi:10.4161/pri.26746. PMC 4134342. PMID 24121631.
- Jin C, Liu X, Zhang F, Wu Y, Yuan J, Zhu J, et al. (2013-01-01). “An updated meta-analysis of the association between SORL1 variants and the risk for sporadic Alzheimer’s disease”. Journal of Alzheimer’s Disease. 37 (2): 429–437. doi:10.3233/JAD-130533. PMID 23948893.
- Piscopo P, Tosto G, Belli C, Talarico G, Galimberti D, Gasparini M, et al. (2015-01-01). “SORL1 Gene is Associated with the Conversion from Mild Cognitive Impairment to Alzheimer’s Disease”. Journal of Alzheimer’s Disease. 46 (3): 771–776. doi:10.3233/JAD-141551. PMID 25881907.
- Andersson CH, Hansson O, Minthon L, Andreasen N, Blennow K, Zetterberg H, et al. (July 2016). “A Genetic Variant of the Sortilin 1 Gene is Associated with Reduced Risk of Alzheimer’s Disease”. Journal of Alzheimer’s Disease. 53 (4): 1353–1363. doi:10.3233/JAD-160319. PMC 5147507. PMID 27392867.
- Kjolby M, Nielsen MS, Petersen CM (April 2015). “Sortilin, encoded by the cardiovascular risk gene SORT1, and its suggested functions in cardiovascular disease”. Current Atherosclerosis Reports. 17 (4): 496. doi:10.1007/s11883-015-0496-7. PMID 25702058. S2CID 22361357
- Goettsch C, Hutcheson JD, Aikawa M, Iwata H, Pham T, Nykjaer A, et al. (April 2016). “Sortilin mediates vascular calcification via its recruitment into extracellular vesicles”. The Journal of Clinical Investigation. 126 (4): 1323–1336. doi:10.1172/JCI80851. PMC 4811143. PMID 26950419.
A significant role for sortilin has recently also been reported in the field of oncology, as it has been detected in several cancer cell lines. Notably, human cancerous epithelial cells exhibited increased levels of sortilin as compared to normal epithelial tissues. Furthermore, it appears that sortilin participates in the progression of breast cancer and contributes to tumor cell adhesion and invasion.
- Roselli S, Pundavela J, Demont Y, Faulkner S, Keene S, Attia J, et al. (April 2015). “Sortilin is associated with breast cancer aggressiveness and contributes to tumor cell adhesion and invasion”. Oncotarget. 6 (12): 10473–10486. doi:10.18632/oncotarget.3401. PMC 4496368. PMID 25871389.
- Wilson CM, Naves T, Al Akhrass H, Vincent F, Melloni B, Bonnaud F, et al. (2016-02-01). “A new role under sortilin’s belt in cancer”. Communicative & Integrative Biology. 9 (1): e1130192. doi:10.1080/19420889.2015.1130192. PMC 4802778. PMID 27066187.
Clinical marker
In 2007, chromosome 1p13.3 was identified as a promising locus through a genome-wide approach in patients with coronary artery disease. Subsequently, accumulating evidence suggests that the SORT1 gene at the 1p13 locus is an important risk factor for coronary artery disease, which is attributed to lipid metabolism disorders.
- Samani NJ, Erdmann J, Hall AS, Hengstenberg C, Mangino M, Mayer B, et al. (August 2007). “Genomewide association analysis of coronary artery disease”. The New England Journal of Medicine. 357 (5): 443–453. doi:10.1056/NEJMoa072366. PMC 2719290. PMID 17634449.
- Nikpay M, Goel A, Won HH, Hall LM, Willenborg C, Kanoni S, et al. (October 2015). “A comprehensive 1,000 Genomes-based genome-wide association meta-analysis of coronary artery disease”. Nature Genetics. 47 (10): 1121–1130. doi:10.1038/ng.3396. PMC 4589895. PMID 26343387.
- Zeller T, Blankenberg S, Diemert P (January 2012). “Genomewide association studies in cardiovascular disease–an update 2011”. Clinical Chemistry. 58 (1): 92–103. doi:10.1373/clinchem.2011.170431. PMID 22125304.
Several single nucleotide polymorphisms of the SORT1 gene have a genetic association between serum blood lipid levels and the pathogenesis of cardiometabolic syndrome, including obesity, hypertension, and coronary artery disease.
- Su X, Chen L, Chen X, Dai C, Wang B (June 2022). “Emerging roles of sortilin in affecting the metabolism of glucose and lipid profiles”. Bosnian Journal of Basic Medical Sciences. 22 (3): 340–352. doi:10.17305/bjbms.2021.6601. PMC 9162750. PMID 34784266.
As the role of sortilin in lipid metabolism and the development of atherosclerosis has been established, a recent study further reported that increased release of soluble sortilin from platelets, measured as circulating sortilin, may be associated with in vivo platelet activation. This observation also indicates that sortilin has a potential application as a clinical biomarker for diagnosis and prognosis.
- Patel KM, Strong A, Tohyama J, Jin X, Morales CR, Billheimer J, et al. (February 2015). “Macrophage sortilin promotes LDL uptake, foam cell formation, and atherosclerosis”. Circulation Research. 116 (5): 789–796. doi:10.1161/CIRCRESAHA.116.305811. PMC 4602371. PMID 25593281.
- Ogawa K, Ueno T, Iwasaki T, Kujiraoka T, Ishihara M, Kunimoto S, et al. (June 2016). “Soluble sortilin is released by activated platelets and its circulating levels are associated with cardiovascular risk factors”. Atherosclerosis. 249: 110–115. doi:10.1016/j.atherosclerosis.2016.03.041. PMID 27085161.
Additionally, a multi-locus genetic risk score study, based on a combination of 27 loci including the SORT1 gene, identified individuals at increased risk for both incident and recurrent coronary artery disease events, as well as an enhanced clinical benefit from statin therapy. The study was based on a community cohort study (the Malmo Diet and Cancer study) and four additional randomized controlled trials of primary prevention cohorts (JUPITER and ASCOT) and secondary prevention cohorts (CARE and PROVE IT-TIMI 22).
- Mega JL, Stitziel NO, Smith JG, Chasman DI, Caulfield M, Devlin JJ, et al. (June 2015). “Genetic risk, coronary heart disease events, and the clinical benefit of statin therapy: an analysis of primary and secondary prevention trials”. Lancet. 385 (9984): 2264–2271. doi:10.1016/S0140-6736(14)61730-X. PMC 4608367. PMID 25748612.
Interactions
Sortilin has been shown to interact with GGA1 and GGA2.
- Nielsen MS, Madsen P, Christensen EI, Nykjaer A, Gliemann J, Kasper D, et al. (May 2001). “The sortilin cytoplasmic tail conveys Golgi-endosome transport and binds the VHS domain of the GGA2 sorting protein”. The EMBO Journal. 20 (9): 2180–2190. doi:10.1093/emboj/20.9.2180. PMC 125444. PMID 11331584.
- Jacobsen L, Madsen P, Nielsen MS, Geraerts WP, Gliemann J, Smit AB, Petersen CM (January 2002). “The sorLA cytoplasmic domain interacts with GGA1 and -2 and defines minimum requirements for GGA binding”. FEBS Letters. 511 (1–3): 155–158. doi:10.1016/S0014-5793(01)03299-9. PMID 11821067. S2CID 21977507.
Interactive Pathway Map
Sortilin participates in interactions within the trans-Golgi network vesicle budding and BDNF signaling pathways.
See also
References
- GRCh38: Ensembl release 89: ENSG00000134243 – Ensembl, May 2017
- GRCm38: Ensembl release 89: ENSMUSG00000068747 – Ensembl, May 2017
- “Human PubMed Reference:”. National Center for Biotechnology Information, U.S. National Library of Medicine.
- “Mouse PubMed Reference:”. National Center for Biotechnology Information, U.S. National Library of Medicine.
- “Entrez Gene: SORT1 sortilin 1”.
- “BioGPS – your Gene Portal System”. biogps.org. Retrieved 2016-08-16.
- Andersen JL, Schrøder TJ, Christensen S, Strandbygård D, Pallesen LT, García-Alai MM, et al. (February 2014). “Identification of the first small-molecule ligand of the neuronal receptor sortilin and structure determination of the receptor-ligand complex”. Acta Crystallographica. Section D, Biological Crystallography. 70 (Pt 2): 451–460. doi:10.1107/S1399004713030149. PMC 3940197. PMID 24531479.
- Nielsen MS, Madsen P, Christensen EI, Nykjaer A, Gliemann J, Kasper D, et al. (May 2001). “The sortilin cytoplasmic tail conveys Golgi-endosome transport and binds the VHS domain of the GGA2 sorting protein”. The EMBO Journal. 20 (9): 2180–2190. doi:10.1093/emboj/20.9.2180. PMC 125444. PMID 11331584.
- Huang G, Buckler-Pena D, Nauta T, Singh M, Asmar A, Shi J, et al. (October 2013). “Insulin responsiveness of glucose transporter 4 in 3T3-L1 cells depends on the presence of sortilin”. Molecular Biology of the Cell. 24 (19): 3115–3122. doi:10.1091/mbc.E12-10-0765. PMC 3784384. PMID 23966466.
- Patel KM, Strong A, Tohyama J, Jin X, Morales CR, Billheimer J, et al. (February 2015). “Macrophage sortilin promotes LDL uptake, foam cell formation, and atherosclerosis”. Circulation Research. 116 (5): 789–796. doi:10.1161/CIRCRESAHA.116.305811. PMC 4602371. PMID 25593281.
- Kjolby M, Nielsen MS, Petersen CM (April 2015). “Sortilin, encoded by the cardiovascular risk gene SORT1, and its suggested functions in cardiovascular disease”. Current Atherosclerosis Reports. 17 (4): 496. doi:10.1007/s11883-015-0496-7. PMID 25702058. S2CID 22361357.
- Nykjaer A, Lee R, Teng KK, Jansen P, Madsen P, Nielsen MS, et al. (February 2004). “Sortilin is essential for proNGF-induced neuronal cell death”. Nature. 427 (6977): 843–848. Bibcode:2004Natur.427..843N. doi:10.1038/nature02319. PMID 14985763. S2CID 4343450.
- Varzideh F, Jankauskas SS, Kansakar U, Mone P, Gambardella J, Santulli G (February 2022). “Sortilin drives hypertension by modulating sphingolipid/ceramide homeostasis and by triggering oxidative stress”. The Journal of Clinical Investigation. 132 (3). doi:10.1172/JCI156624. PMC 8803317. PMID 35104807.
- Goettsch C, Hutcheson JD, Aikawa M, Iwata H, Pham T, Nykjaer A, et al. (April 2016). “Sortilin mediates vascular calcification via its recruitment into extracellular vesicles”. The Journal of Clinical Investigation. 126 (4): 1323–1336. doi:10.1172/JCI80851. PMC 4811143. PMID 26950419.
- Roselli S, Pundavela J, Demont Y, Faulkner S, Keene S, Attia J, et al. (April 2015). “Sortilin is associated with breast cancer aggressiveness and contributes to tumor cell adhesion and invasion”. Oncotarget. 6 (12): 10473–10486. doi:10.18632/oncotarget.3401. PMC 4496368. PMID 25871389.
- Wilson CM, Naves T, Al Akhrass H, Vincent F, Melloni B, Bonnaud F, et al. (2016-02-01). “A new role under sortilin’s belt in cancer”. Communicative & Integrative Biology. 9 (1): e1130192. doi:10.1080/19420889.2015.1130192. PMC 4802778. PMID 27066187.
- Mega JL, Stitziel NO, Smith JG, Chasman DI, Caulfield M, Devlin JJ, et al. (June 2015). “Genetic risk, coronary heart disease events, and the clinical benefit of statin therapy: an analysis of primary and secondary prevention trials”. Lancet. 385 (9984): 2264–2271. doi:10.1016/S0140-6736(14)61730-X. PMC 4608367. PMID 25748612.
- “SORT1 – Sortilin precursor – Homo sapiens (Human) – SORT1 gene & protein”. www.uniprot.org. Retrieved 2016-08-16.
- Quistgaard EM, Madsen P, Grøftehauge MK, Nissen P, Petersen CM, Thirup SS (January 2009). “Ligands bind to Sortilin in the tunnel of a ten-bladed beta-propeller domain”. Nature Structural & Molecular Biology. 16 (1): 96–98. doi:10.1038/nsmb.1543. PMID 19122660. S2CID 205522786.
- Nykjaer A, Willnow TE (April 2012). “Sortilin: a receptor to regulate neuronal viability and function”. Trends in Neurosciences. 35 (4): 261–270. doi:10.1016/j.tins.2012.01.003. PMID 22341525. S2CID 28152980.
- Quistgaard EM, Grøftehauge MK, Madsen P, Pallesen LT, Christensen B, Sørensen ES, et al. (September 2014). “Revisiting the structure of the Vps10 domain of human sortilin and its interaction with neurotensin”. Protein Science. 23 (9): 1291–1300. doi:10.1002/pro.2512. PMC 4243999. PMID 24985322.
- Leloup N, Lössl P, Meijer DH, Brennich M, Heck AJ, Thies-Weesie DM, Janssen BJ (November 2017). “Low pH-induced conformational change and dimerization of sortilin triggers endocytosed ligand release”. Nature Communications. 8 (1): 1708. Bibcode:2017NatCo…8.1708L. doi:10.1038/s41467-017-01485-5. PMC 5700061. PMID 29167428.
- Schmidt V, Willnow TE (February 2016). “Protein sorting gone wrong–VPS10P domain receptors in cardiovascular and metabolic diseases”. Atherosclerosis. 245: 194–199. doi:10.1016/j.atherosclerosis.2015.11.027. PMID 26724530.
- Akil H, Perraud A, Mélin C, Jauberteau MO, Mathonnet M (2011-01-01). “Fine-tuning roles of endogenous brain-derived neurotrophic factor, TrkB and sortilin in colorectal cancer cell survival”. PLOS ONE. 6 (9): e25097. Bibcode:2011PLoSO…625097A. doi:10.1371/journal.pone.0025097. PMC 3180371. PMID 21966426.
- Su X, Chen L, Chen X, Dai C, Wang B (June 2022). “Emerging roles of sortilin in affecting the metabolism of glucose and lipid profiles”. Bosnian Journal of Basic Medical Sciences. 22 (3): 340–352. doi:10.17305/bjbms.2021.6601. PMC 9162750. PMID 34784266.
- Nielsen MS, Jacobsen C, Olivecrona G, Gliemann J, Petersen CM (March 1999). “Sortilin/neurotensin receptor-3 binds and mediates degradation of lipoprotein lipase”. The Journal of Biological Chemistry. 274 (13): 8832–8836. doi:10.1074/jbc.274.13.8832. PMID 10085125.
- Ariga M, Nedachi T, Katagiri H, Kanzaki M (April 2008). “Functional role of sortilin in myogenesis and development of insulin-responsive glucose transport system in C2C12 myocytes”. The Journal of Biological Chemistry. 283 (15): 10208–10220. doi:10.1074/jbc.M710604200. PMID 18258592.
- Maeda S, Nobukuni T, Shimo-Onoda K, Hayashi K, Yone K, Komiya S, Inoue I (October 2002). “Sortilin is upregulated during osteoblastic differentiation of mesenchymal stem cells and promotes extracellular matrix mineralization”. Journal of Cellular Physiology. 193 (1): 73–79. doi:10.1002/jcp.10151. PMID 12209882. S2CID 32754981.
- Strong A, Rader DJ (June 2012). “Sortilin as a regulator of lipoprotein metabolism”. Current Atherosclerosis Reports. 14 (3): 211–218. doi:10.1007/s11883-012-0248-x. PMC 7089359. PMID 22538429.
- Zhong LY, Cayabyab FS, Tang CK, Zheng XL, Peng TH, Lv YC (September 2016). “Sortilin: A novel regulator in lipid metabolism and atherogenesis”. Clinica Chimica Acta; International Journal of Clinical Chemistry. 460: 11–17. doi:10.1016/j.cca.2016.06.013. PMID 27312323.
- Kjolby M, Andersen OM, Breiderhoff T, Fjorback AW, Pedersen KM, Madsen P, et al. (September 2010). “Sort1, encoded by the cardiovascular risk locus 1p13.3, is a regulator of hepatic lipoprotein export”. Cell Metabolism. 12 (3): 213–223. doi:10.1016/j.cmet.2010.08.006. PMID 20816088.
- Carlo AS (2013-10-01). “Sortilin, a novel APOE receptor implicated in Alzheimer disease”. Prion. 7 (5): 378–382. doi:10.4161/pri.26746. PMC 4134342. PMID 24121631.
- Jin C, Liu X, Zhang F, Wu Y, Yuan J, Zhu J, et al. (2013-01-01). “An updated meta-analysis of the association between SORL1 variants and the risk for sporadic Alzheimer’s disease”. Journal of Alzheimer’s Disease. 37 (2): 429–437. doi:10.3233/JAD-130533. PMID 23948893.
- Piscopo P, Tosto G, Belli C, Talarico G, Galimberti D, Gasparini M, et al. (2015-01-01). “SORL1 Gene is Associated with the Conversion from Mild Cognitive Impairment to Alzheimer’s Disease”. Journal of Alzheimer’s Disease. 46 (3): 771–776. doi:10.3233/JAD-141551. PMID 25881907.
- Andersson CH, Hansson O, Minthon L, Andreasen N, Blennow K, Zetterberg H, et al. (July 2016). “A Genetic Variant of the Sortilin 1 Gene is Associated with Reduced Risk of Alzheimer’s Disease”. Journal of Alzheimer’s Disease. 53 (4): 1353–1363. doi:10.3233/JAD-160319. PMC 5147507. PMID 27392867.
- Samani NJ, Erdmann J, Hall AS, Hengstenberg C, Mangino M, Mayer B, et al. (August 2007). “Genomewide association analysis of coronary artery disease”. The New England Journal of Medicine. 357 (5): 443–453. doi:10.1056/NEJMoa072366. PMC 2719290. PMID 17634449.
- Nikpay M, Goel A, Won HH, Hall LM, Willenborg C, Kanoni S, et al. (October 2015). “A comprehensive 1,000 Genomes-based genome-wide association meta-analysis of coronary artery disease”. Nature Genetics. 47 (10): 1121–1130. doi:10.1038/ng.3396. PMC 4589895. PMID 26343387.
- Zeller T, Blankenberg S, Diemert P (January 2012). “Genomewide association studies in cardiovascular disease–an update 2011”. Clinical Chemistry. 58 (1): 92–103. doi:10.1373/clinchem.2011.170431. PMID 22125304.
- Ogawa K, Ueno T, Iwasaki T, Kujiraoka T, Ishihara M, Kunimoto S, et al. (June 2016). “Soluble sortilin is released by activated platelets and its circulating levels are associated with cardiovascular risk factors”. Atherosclerosis. 249: 110–115. doi:10.1016/j.atherosclerosis.2016.03.041. PMID 27085161.
- Jacobsen L, Madsen P, Nielsen MS, Geraerts WP, Gliemann J, Smit AB, Petersen CM (January 2002). “The sorLA cytoplasmic domain interacts with GGA1 and -2 and defines minimum requirements for GGA binding”. FEBS Letters. 511 (1–3): 155–158. doi:10.1016/S0014-5793(01)03299-9. PMID 11821067. S2CID 21977507.
- Januliene, Dovile; Manavalan, Arulmani; Ovesen, Peter Lund; Pedersen, Karen-Marie; Thirup, Søren; Nykjær, Anders; Moeller, Arne (September 2017). “Hidden Twins: SorCS Neuroreceptors Form Stable Dimers”. Journal of Molecular Biology. 429 (19): 2907–2917. doi:10.1016/j.jmb.2017.08.006. ISSN 0022-2836. PMID 28827148.
Further reading
- Vincent JP, Mazella J, Kitabgi P (July 1999). “Neurotensin and neurotensin receptors”. Trends in Pharmacological Sciences. 20 (7): 302–309. doi:10.1016/S0165-6147(99)01357-7. PMID 10390649.
- Mazella J (January 2001). “Sortilin/neurotensin receptor-3: a new tool to investigate neurotensin signaling and cellular trafficking?”. Cellular Signalling. 13 (1): 1–6. doi:10.1016/S0898-6568(00)00130-3. PMID 11257441.
- Petersen CM, Nielsen MS, Nykjaer A, Jacobsen L, Tommerup N, Rasmussen HH, et al. (February 1997). “Molecular identification of a novel candidate sorting receptor purified from human brain by receptor-associated protein affinity chromatography”. The Journal of Biological Chemistry. 272 (6): 3599–3605. doi:10.1074/jbc.272.6.3599. PMID 9013611.
- Lin BZ, Pilch PF, Kandror KV (September 1997). “Sortilin is a major protein component of Glut4-containing vesicles”. The Journal of Biological Chemistry. 272 (39): 24145–24147. doi:10.1074/jbc.272.39.24145. PMID 9305862.
- Tauris J, Ellgaard L, Jacobsen C, Nielsen MS, Madsen P, Thøgersen HC, et al. (June 1998). “The carboxy-terminal domain of the receptor-associated protein binds to the Vps10p domain of sortilin”. FEBS Letters. 429 (1): 27–30. doi:10.1016/S0014-5793(98)00559-6. PMID 9657377.
- Mazella J, Zsürger N, Navarro V, Chabry J, Kaghad M, Caput D, et al. (October 1998). “The 100-kDa neurotensin receptor is gp95/sortilin, a non-G-protein-coupled receptor”. The Journal of Biological Chemistry. 273 (41): 26273–26276. doi:10.1074/jbc.273.41.26273. PMID 9756851.
- Munck Petersen C, Nielsen MS, Jacobsen C, Tauris J, Jacobsen L, Gliemann J, et al. (February 1999). “Propeptide cleavage conditions sortilin/neurotensin receptor-3 for ligand binding”. The EMBO Journal. 18 (3): 595–604. doi:10.1093/emboj/18.3.595. PMC 1171152. PMID 9927419.
- Nielsen MS, Jacobsen C, Olivecrona G, Gliemann J, Petersen CM (March 1999). “Sortilin/neurotensin receptor-3 binds and mediates degradation of lipoprotein lipase”. The Journal of Biological Chemistry. 274 (13): 8832–8836. doi:10.1074/jbc.274.13.8832. PMID 10085125.
- Nielsen MS, Madsen P, Christensen EI, Nykjaer A, Gliemann J, Kasper D, et al. (May 2001). “The sortilin cytoplasmic tail conveys Golgi-endosome transport and binds the VHS domain of the GGA2 sorting protein”. The EMBO Journal. 20 (9): 2180–2190. doi:10.1093/emboj/20.9.2180. PMC 125444. PMID 11331584.
- Takatsu H, Katoh Y, Shiba Y, Nakayama K (July 2001). “Golgi-localizing, gamma-adaptin ear homology domain, ADP-ribosylation factor-binding (GGA) proteins interact with acidic dileucine sequences within the cytoplasmic domains of sorting receptors through their Vps27p/Hrs/STAM (VHS) domains”. The Journal of Biological Chemistry. 276 (30): 28541–28545. doi:10.1074/jbc.C100218200. PMID 11390366.
- Hampe W, Rezgaoui M, Hermans-Borgmeyer I, Schaller HC (June 2001). “The genes for the human VPS10 domain-containing receptors are large and contain many small exons”. Human Genetics. 108 (6): 529–536. doi:10.1007/s004390100504. PMID 11499680. S2CID 23375354.
- Shiba T, Takatsu H, Nogi T, Matsugaki N, Kawasaki M, Igarashi N, et al. (February 2002). “Structural basis for recognition of acidic-cluster dileucine sequence by GGA1”. Nature. 415 (6874): 937–941. Bibcode:2002Natur.415..937S. doi:10.1038/415937a. PMID 11859376. S2CID 4395774.
- Maeda S, Nobukuni T, Shimo-Onoda K, Hayashi K, Yone K, Komiya S, Inoue I (October 2002). “Sortilin is upregulated during osteoblastic differentiation of mesenchymal stem cells and promotes extracellular matrix mineralization”. Journal of Cellular Physiology. 193 (1): 73–79. doi:10.1002/jcp.10151. PMID 12209882. S2CID 32754981.
- Martin S, Navarro V, Vincent JP, Mazella J (October 2002). “Neurotensin receptor-1 and -3 complex modulates the cellular signaling of neurotensin in the HT29 cell line”. Gastroenterology. 123 (4): 1135–1143. doi:10.1053/gast.2002.36000. PMID 12360476.
- Navarro V, Vincent JP, Mazella J (November 2002). “Shedding of the luminal domain of the neurotensin receptor-3/sortilin in the HT29 cell line”. Biochemical and Biophysical Research Communications. 298 (5): 760–764. doi:10.1016/S0006-291X(02)02564-0. PMID 12419319.
- Martin S, Vincent JP, Mazella J (February 2003). “Involvement of the neurotensin receptor-3 in the neurotensin-induced migration of human microglia”. The Journal of Neuroscience. 23 (4): 1198–1205. doi:10.1523/JNEUROSCI.23-04-01198.2003. PMC 6742286. PMID 12598608.
- Lefrancois S, Zeng J, Hassan AJ, Canuel M, Morales CR (December 2003). “The lysosomal trafficking of sphingolipid activator proteins (SAPs) is mediated by sortilin”. The EMBO Journal. 22 (24): 6430–6437. doi:10.1093/emboj/cdg629. PMC 291824. PMID 14657016.