Dermatan sulfate (and a few other things)

Dermatan sulfate is a glycosaminoglycan (formerly called a mucopolysaccharide) found mostly in skin, but also in blood vesselsheart valvestendons, and lungs.

It is also referred to as chondroitin sulfate B, although it is no longer classified as a form of chondroitin sulfate by most sources. The formula is C14H21NO15S. This carbohydrate is composed of linear polymers of disaccharide units that contain, N-acetyl galactosamine (GalNAc) and iduronic acid (IdoA). These repeating units are sulfated at a variety of positions. Dermatan sulfate is a component of the compound sulodexide.

Function

Dermatan sulfate may have roles in coagulationcardiovascular diseasecarcinogenesisinfectionwound repair, maintaining the shape of galactosamine 4-sulfate, skin, and fibrosis.

Pathology

Dermatan sulfate accumulates abnormally in several of the mucopolysaccharidosis disorders.

An excess of dermatan sulfate in the mitral valve is characteristic of myxomatous degeneration of the leaflets leading to redundancy of valve tissue and ultimately, mitral valve prolapse (into the left atrium) and insufficiency. This chronic prolapse occurs mainly in women over the age of 60, and can predispose the patient to mitral annular calcificationMitral valve insufficiency can lead to eccentric (volume dependent or dilated) hypertrophy and eventually left heart failure if untreated.

See also

References

  1. Trowbridge JM, Gallo RL (September 2002). “Dermatan sulfate: new functions from an old glycosaminoglycanGlycobiology12 (9): 117R–125R. doi:10.1093/glycob/cwf066PMID 12213784.
  2. “Dermatan sulfate”.
  3. Lasierra-Cirujeda J, Coronel P, Aza M, Gimeno M (2010). “Use of sulodexide in patients with peripheral vascular disease”Journal of Blood Medicine1: 105–115. doi:10.2147/JBM.S10558PMC 3262318PMID 22282689Sulodexide is a highly purified glycosaminoglycan (GAG) obtained from porcine digestive mucosa and is composed of a mixture of 80% heparan sulfate (an electrophoretically fast moving fraction with a low molecular weight of 7000 Da and affinity for antithrombin III) and 20% dermatan sulfate with a high molecular weight (25,000 Da) and affinity for the heparin II cofactor.
  4.  Donald M. Marcus; Elvin A. Kabat; Gerald Schiffman (1964). “Immunochemical Studies on Blood Groups. XXXI. Destruction of Blood Group A Activity by an Enzyme from Clostridium tertium Which Deacetylates N-Acetylgalactosamine in Intact Blood Group Substances”Biochemistry3 (3): 437–443. doi:10.1021/bi00891a023.
  5. Nair, Jayaprakash K; Willoughby, Jennifer L. S; Chan, Amy; Charisse, Klaus; Alam, Md. Rowshon; Wang, Qianfan; Hoekstra, Menno; Kandasamy, Pachamuthu; Kel’In, Alexander V; Milstein, Stuart; Taneja, Nate; o’Shea, Jonathan; Shaikh, Sarfraz; Zhang, Ligang; Van Der Sluis, Ronald J; Jung, Michael E; Akinc, Akin; Hutabarat, Renta; Kuchimanchi, Satya; Fitzgerald, Kevin; Zimmermann, Tracy; Van Berkel, Theo J. C; Maier, Martin A; Rajeev, Kallanthottathil G; Manoharan, Muthiah (2014). “Multivalent N-Acetylgalactosamine-Conjugated siRNA Localizes in Hepatocytes and Elicits Robust RNAi-Mediated Gene Silencing”Journal of the American Chemical Society136 (49): 16958–16961. doi:10.1021/ja505986aPMID 25434769.
  6. Hallak LK, Collins PL, Knudson W, Peeples ME (2000). “Iduronic acid-containing glycosaminoglycans on target cells are required for efficient respiratory syncytial virus infection”Virology271 (2): 264–75. doi:10.1006/viro.2000.0293PMID
  7. Ferro, D. R. Provasoli, A. (1990). “Conformer populations of L-iduronic acid residues in glycosaminoglycan sequences”Carbohydr. Res195 (2): 157–167. doi:10.1016/0008-6215(90)84164-PPMID 2331699.
  8.  Kamel M, Hanafi M, Bassiouni M (1991). “Inhibition of elastase enzyme release from human polymorphonuclear leukocytes by N-acetyl-galactosamine and N-acetyl-glucosamine”Clinical and Experimental Rheumatology9 (1): 17–21. PMID 2054963.
  9. Grigorian A, Araujo L, Naidu NN, Place DJ, Choudhury B, Demetriou M (November 2011). “N-acetylglucosamine inhibits T-helper 1 (Th1)/T-helper 17 (Th17) cell responses and treats experimental autoimmune encephalomyelitis”The Journal of Biological Chemistry286 (46): 40133–40141. doi:10.1074/jbc.M111.277814PMC 3220534PMID 21965673.
  10. Sy M, Newton BL, Pawling J, Hayama KL, Cordon A, Yu Z, et al. (September 2023). “N-acetylglucosamine inhibits inflammation and neurodegeneration markers in multiple sclerosis: a mechanistic trial”Journal of Neuroinflammation20 (1): 209. doi:10.1186/s12974-023-02893-9PMC 10498575PMID 37705084.
  11. Hart GW, Slawson C, Ramirez-Correa G, Lagerlof O (2011). “Cross talk between O-GlcNAcylation and phosphorylation: roles in signaling, transcription, and chronic disease”Annual Review of Biochemistry80: 825–858. doi:10.1146/annurev-biochem-060608-102511PMC 3294376PMID 21391816.
  12. Ma J, Hart GW (August 2013). “Protein O-GlcNAcylation in diabetes and diabetic complications”Expert Review of Proteomics10 (4): 365–380. doi:10.1586/14789450.2013.820536PMC 3985334PMID 23992419.
  13. Wheatley EG, Albarran E, White CW, Bieri G, Sanchez-Diaz C, Pratt K, et al. (October 2019). “Neuronal O-GlcNAcylation Improves Cognitive Function in the Aged Mouse Brain”Current Biology29 (20): 3359–3369.e4. doi:10.1016/j.cub.2019.08.003PMC 7199460PMID 31588002.

External links

Antithrombotics (thrombolyticsanticoagulants and antiplatelet drugs) (B01)
Polysaccharidesglycosaminoglycans

Categories

Leave a Reply

Your email address will not be published. Required fields are marked *

This site uses Akismet to reduce spam. Learn how your comment data is processed.