Direct interaction model (substituent effects)
The Hunter–Sanders model has been criticized by numerous research groups offering contradictory experimental and computational evidence of pi stacking interactions that are not governed primarily by electrostatic effects.
The clearest experimental evidence against electrostatic substituent effects was reported by Rashkin and Waters.
- Rashkin MJ, Waters ML (March 2002). “Unexpected substituent effects in offset pi-pi stacked interactions in water”. Journal of the American Chemical Society. 124 (9): 1860–1861. doi:10.1021/ja016508z. PMID 11866592.
They used meta- and para-substituted N-benzyl-2-(2-fluorophenyl)-pyridinium bromides, which stack in a parallel displaced conformation, as a model system for pi stacking interactions. In their system, a methylene linker prohibits favorable T-shaped interactions. As in previous models, the relative strength of pi stacking interactions was measured by NMR as the rate of rotation about the biaryl bond, as pi stacking interactions are disrupted in the transition state. Para-substituted rings had small rotational barriers which increased with increasingly electron-withdrawing groups, consistent with prior findings. However, meta-substituted rings had much larger barriers of rotation despite having nearly identical electron densities in the aromatic ring. The authors explain this discrepancy as direct interaction of the edge of hydrogen atoms of one ring with the electronegative substituents on the other ring. This claim is supported by chemical shift data of the proton in question.
Much of the detailed analyses of the relative contributions of factors in pi stacking have been borne out by computation. Sherill and Sinnokrot reported a surprising finding using high-level theory that all substituted benzene dimers have more favorable binding interactions than a benzene dimer in the sandwich configuration.
- Sinnokrot MO, Sherrill CD (2003). “Unexpected Substituent Effects in Face-to-Face π-Stacking Interactions”. J. Phys. Chem. A. 107 (41): 8377–8379. Bibcode:2003JPCA..107.8377S. doi:10.1021/jp030880e.
Later computational work from the Sherill group revealed that the substituent effects for the sandwich configuration are additive, which points to a strong influence of dispersion forces and direct interactions between substituents.
- Ringer AL, Sinnokrot MO, Lively RP, Sherrill CD (May 2006). “The effect of multiple substituents on sandwich and T-shaped pi-pi interactions”. Chemistry. 12 (14): 3821–3828. doi:10.1002/chem.200501316. PMID 16514687.
It was noted that interactions between substituted benzenes in the T-shaped configuration were more complex. Finally, Sherill and Sinnokrot argue in their review article that any semblance of a trend based on electron donating or withdrawing substituents can be explained by exchange-repulsion and dispersion terms.
- Sinnokrot MO, Sherrill CD (September 2006). “High-accuracy quantum mechanical studies of pi-pi interactions in benzene dimers”. The Journal of Physical Chemistry A. 110 (37): 10656–10668. Bibcode:2006JPCA..11010656S. doi:10.1021/jp0610416. PMID 16970354.
Houk and Wheeler also provide compelling computational evidence for the importance of direct interaction in pi stacking.
- Wheeler SE, Houk KN (August 2008). “Substituent effects in the benzene dimer are due to direct interactions of the substituents with the unsubstituted benzene”. Journal of the American Chemical Society. 130 (33): 10854–10855. doi:10.1021/ja802849j. PMC 2655233. PMID 18652453.
Leave a Reply