k

Ommochrome (visual pigment) and Kynurenine (a metabolite of the amino acid l-tryptophan used in the production of niacin)

Ommochrome (or visual pigment) refers to several biological pigments that occur in the eyes of crustaceans and insects. The eye color is determined by the ommochromes. Ommochromes are also found in the chromatophores of cephalopods, and in spiders.

Ommochromes are metabolites of tryptophan, via kynurenine and 3-hydroxykynurenine. They are responsible for a wide variety of colors, ranging from yellow over red and brown to black. Lighter colors tend to be generated by ommatins, while mixtures of ommatin and ommins are responsible for darker colors.

In spiders, ommochromes are usually deposited as pigment granules within the cells of the hypodermis, immediately beneath the cuticle.

A study on various insects showed that ommochromes in their eyes have high antioxidant activity. The ommochromes were found to have the ability to suppress the Maillard reaction.

The Kynurenine pathway, which connects quinolinic acid to tryptophan. The pathway is named for the first intermediate, kynurenine, which is a precursor to kynurenic acid and 3-hydroxykynurenine.

3-Hydroxykynurenine is a metabolite of tryptophan, which filters UV light in the human lens. It is one of two pigments identified as responsible for the goldenrod crab spider‘s (Misumena vatia) yellow coloration.

l-Kynurenine is a metabolite of the amino acid l-tryptophan used in the production of niacin.

Kynurenine is synthesized by the enzyme tryptophan dioxygenase, which is made primarily but not exclusively in the liver, and indoleamine 2,3-dioxygenase, which is made in many tissues in response to immune activation.

Kynurenine and its further breakdown products carry out diverse biological functions, including dilating blood vessels during inflammation and regulating the immune response.

Some cancers increase kynurenine production, which increases tumor growth.

Evidence suggests that increased kynurenine production may precipitate depressive symptoms associated with interferon treatment for hepatitis C.

Cognitive deficits in schizophrenia are associated with imbalances in the enzymes that break down kynurenine.

Blood levels of kynurenine are reduced in people with bipolar disorder.

  • Bartoli, F; Misiak, B; Callovini, T; Cavaleri, D; Cioni, RM; Crocamo, C; Savitz, JB; Carrà, G (19 October 2020). “The kynurenine pathway in bipolar disorder: a meta-analysis on the peripheral blood levels of tryptophan and related metabolites”. Molecular Psychiatry26 (7): 3419–3429. doi:10.1038/s41380-020-00913-1PMID 33077852S2CID 224314102.

Kynurenine production is increased in Alzheimer’s disease and cardiovascular disease where its metabolites are associated with cognitive deficits and depressive symptoms.

  • Guillemin GJ, Brew BJ, Noonan CE, Takikawa O, Cullen KM (2005). “Indoleamine 2,3 dioxygenase and quinolinic acid Immunoreactivity in Alzheimer’s disease hippocampus”. Neuropathology and Applied Neurobiology31 (4): 395–404. doi:10.1111/j.1365-2990.2005.00655.xPMID 16008823S2CID 7754894.
  • Wirleitner B, Rudzite V, Neurauter G, Murr C, Kalnins U, Erglis A, Trusinskis K, Fuchs D (2003). “Immune activation and degradation of tryptophan in coronary heart disease”. European Journal of Clinical Investigation33 (7): 550–4. doi:10.1046/j.1365-2362.2003.01186.xPMID 12814390S2CID 10300941.
  • Gulaj E, Pawlak K, Bien B, Pawlak D (2010). “Kynurenine and its metabolites in Alzheimer’s disease patients”. Advances in Medical Sciences55 (2): 204–11. doi:10.2478/v10039-010-0023-6PMID 20639188.
  • Swardfager W, Herrmann N, Dowlati Y, Oh PI, Kiss A, Walker SE, Lanctôt KL (2009). “Indoleamine 2,3-dioxygenase activation and depressive symptoms in patients with coronary artery disease”. Psychoneuroendocrinology34 (10): 1560–6. doi:10.1016/j.psyneuen.2009.05.019PMID 19540675S2CID 36687413.

Kynurenine is also associated with tics.

Kynureninase catabolizes the conversion of kynurenine into anthranilic acid while kynurenine-oxoglutarate transaminase catabolizes its conversion into kynurenic acidKynurenine 3-hydroxylase converts kynurenine to 3-hydroxykynurenine.

Kynurenine has also been identified as one of two compounds that makes up the pigment that gives the goldenrod crab spider its yellow color.

Kynurenine pathway dysfunction

Dysfunctional states of distinct steps of the kynurenine pathway (such as kynurenine, kynurenic acidquinolinic acidanthranilic acid, 3-hydroxykynurenine) have been described for a number of disorders, including:

Downregulation of kynurenine-3-monooxygenase (KMO) can be caused by genetic polymorphismscytokines, or both.

KMO deficiency leads to an accumulation of kynurenine and to a shift within the tryptophan metabolic pathway towards kynurenine acid and anthranilic acid.

Kynurenine-3-monooxygenase deficiency is associated with disorders of the brain (e.g. major depressive disorder, bipolar disorder, schizophrenia, tic disorders) and of the liver.

See also

References

  1. Oxford, G. S.; Gillespie, R. G. (1998). “Evolution and Ecology of Spider Coloration”. Annual Review of Entomology43: 619–643. doi:10.1146/annurev.ento.43.1.619PMID 15012400S2CID 6963733.
  2. Casas, J. R. M.; Casas, M. (2009). “The multiple disguises of spiders: Web colour and decorations, body colour and movement”Philosophical Transactions of the Royal Society B: Biological Sciences364 (1516): 471–480. doi:10.1098/rstb.2008.0212PMC 2674075PMID 18990672.
  3. Dontsov, A. E.; Yakovleva, M. A.; Ostrovsky, M. A. (2021). “Ommochromes of Insect Compound Eyes: Antiglycation Action”Neuroscience and Behavioral Physiology51 (6): 837–841. doi:10.1007/s11055-021-01141-yISSN 0097-0549S2CID 254862128.
  4. Opitz CA, Litzenburger UM, Sahm F, Ott M, Tritschler I, Trump S, Schumacher T, Jestaedt L, Schrenk D, Weller M, Jugold M, Guillemin GJ, Miller CL, Lutz C, Radlwimmer B, Lehmann I, von Deimling A, Wick W, Platten M (2011). “An endogenous tumour-promoting ligand of the human aryl hydrocarbon receptor”Nature478 (7368): 197–203. Bibcode:2011Natur.478..197Odoi:10.1038/nature10491PMID 21976023.
  5. Wang Y, Liu H, McKenzie G, Witting PK, Stasch JP, Hahn M, Changsirivathanathamrong D, Wu BJ, Ball HJ, Thomas SR, Kapoor V, Celermajer DS, Mellor AL, Keaney JF, Hunt NH, Stocker R (2010). “Kynurenine is an endothelium-derived relaxing factor produced during inflammation”Nature Medicine16 (3): 279–85. doi:10.1038/nm.2092PMC 3556275PMID 20190767.
  6. Nguyen NT, Kimura A, Nakahama T, Chinen I, Masuda K, Nohara K, Fujii-Kuriyama Y, Kishimoto T (2010). “Aryl hydrocarbon receptor negatively regulates dendritic cell immunogenicity via a kynurenine-dependent mechanism”Proceedings of the National Academy of Sciences107 (46): 19961–6. Bibcode:2010PNAS..10719961Ndoi:10.1073/pnas.1014465107PMC 2993339PMID 21041655.
  7. Capuron L, Neurauter G, Musselman DL, Lawson DH, Nemeroff CB, Fuchs D, Miller AH (2003). “Interferon-alpha–induced changes in tryptophan metabolism”. Biological Psychiatry54 (9): 906–14. doi:10.1016/S0006-3223(03)00173-2PMID 14573318S2CID 24079984.
  8. Wonodi I, Stine OC, Sathyasaikumar KV, Roberts RC, Mitchell BD, Hong LE, Kajii Y, Thaker GK, Schwarcz R (2011). “Downregulated Kynurenine 3-Monooxygenase Gene Expression and Enzyme Activity in Schizophrenia and Genetic Association with Schizophrenia Endophenotypes”Archives of General Psychiatry68 (7): 665–74. doi:10.1001/archgenpsychiatry.2011.71PMC 3855543PMID 21727251.
  9. Bartoli, F; Misiak, B; Callovini, T; Cavaleri, D; Cioni, RM; Crocamo, C; Savitz, JB; Carrà, G (19 October 2020). “The kynurenine pathway in bipolar disorder: a meta-analysis on the peripheral blood levels of tryptophan and related metabolites”. Molecular Psychiatry26 (7): 3419–3429. doi:10.1038/s41380-020-00913-1PMID 33077852S2CID 224314102.
  10. Guillemin GJ, Brew BJ, Noonan CE, Takikawa O, Cullen KM (2005). “Indoleamine 2,3 dioxygenase and quinolinic acid Immunoreactivity in Alzheimer’s disease hippocampus”. Neuropathology and Applied Neurobiology31 (4): 395–404. doi:10.1111/j.1365-2990.2005.00655.xPMID 16008823S2CID 7754894.
  11. Wirleitner B, Rudzite V, Neurauter G, Murr C, Kalnins U, Erglis A, Trusinskis K, Fuchs D (2003). “Immune activation and degradation of tryptophan in coronary heart disease”. European Journal of Clinical Investigation33 (7): 550–4. doi:10.1046/j.1365-2362.2003.01186.xPMID 12814390S2CID 10300941.
  12. Gulaj E, Pawlak K, Bien B, Pawlak D (2010). “Kynurenine and its metabolites in Alzheimer’s disease patients”. Advances in Medical Sciences55 (2): 204–11. doi:10.2478/v10039-010-0023-6PMID 20639188.
  13. Swardfager W, Herrmann N, Dowlati Y, Oh PI, Kiss A, Walker SE, Lanctôt KL (2009). “Indoleamine 2,3-dioxygenase activation and depressive symptoms in patients with coronary artery disease”. Psychoneuroendocrinology34 (10): 1560–6. doi:10.1016/j.psyneuen.2009.05.019PMID 19540675S2CID 36687413.
  14. Hoekstra PJ, Anderson GM, Troost PW, Kallenberg CG, Minderaa RB (2007). “Plasma kynurenine and related measures in tic disorder patients”. European Child & Adolescent Psychiatry16: 71–7. doi:10.1007/s00787-007-1009-1PMID 17665285S2CID 39150343.
  15. McCreary AC, Handley SL (1995). “Kynurenine potentiates the DOI head shake in mice”. Journal of Psychopharmacology9 (1): 69–70. doi:10.1177/026988119500900112PMID 22298697S2CID 28700510.
  16. Kynureninase, European Bioinformatics Institute
  17. Saito Y, Hayaishi O, Rothberg S (1957-12-01). “Studies on Oxygenases”The Journal of Biological Chemistry229 (2): 921–34. doi:10.1016/S0021-9258(19)63696-3PMID 13502353.[permanent dead link]
  18. Oxford, G. S.; Gillespie, R. G. (January 1998). “Evolution and Ecology of Spider Coloration”Annual Review of Entomology43 (1): 619–643. doi:10.1146/annurev.ento.43.1.619ISSN 0066-4170PMID 15012400S2CID 6963733.
  19. Schwarcz, Robert; John P. Bruno; Paul J. Muchowski; Hui-Qiu Wu (July 2012). “Kynurenines in the Mammalian Brain: When Physiology Meets Pathology”Nature Reviews Neuroscience13 (7): 465–477. doi:10.1038/nrn3257PMC 3681811PMID 22678511.
  20. Stone TW (2001). “Kynurenines in the CNS: from endogenous obscurity to therapeutic importance”. Progress in Neurobiology64 (2): 185–218. doi:10.1016/s0301-0082(00)00032-0PMID 11240212S2CID 6446144.
  21. Liu, Duan; Ray, Balmiki; Neavin, Drew R.; Zhang, Jiabin; Athreya, Arjun P.; Biernacka, Joanna M.; Bobo, William V.; Hall-Flavin, Daniel K.; Skime, Michelle K.; Zhu, Hongjie; Jenkins, Gregory D. (January 10, 2018). “Beta-defensin 1, aryl hydrocarbon receptor and plasma kynurenine in major depressive disorder: metabolomics-informed genomics”Translational Psychiatry8 (1): 10. doi:10.1038/s41398-017-0056-8ISSN 2158-3188PMC 5802574PMID 29317604.
  22. Kashi, Alex A.; Davis, Ronald W.; Phair, Robert D. (2019). “The IDO Metabolic Trap Hypothesis for the Etiology of ME/CFS”Diagnostics9 (3): 82. doi:10.3390/diagnostics9030082PMC 6787624PMID 31357483.
  23. “Neurobiochemie” (in German).
  24. Müller N, Myint AM, Schwarz MJ (2011). “Inflammatory biomarkers and depression”. Neurotox Res19 (2): 308–18. doi:10.1007/s12640-010-9210-2PMID 20658274S2CID 3225744.
  25. Wonodi I, Stine OC, Sathyasaikumar KV, Roberts RC, Mitchell BD, Hong LE, Kajii Y, Thaker GK, Schwarcz R (2011). “Downregulated kynurenine 3-monooxygenase gene expression and enzyme activity in schizophrenia and genetic association with schizophrenia endophenotypes”Arch. Gen. Psychiatry68 (7): 665–74. doi:10.1001/archgenpsychiatry.2011.71PMC 3855543PMID 21727251.
  26. Marx W, McGuinness AJ, Rocks T, Ruusunen A, Cleminson J, Walker AJ, Gomes-da-Costa S, Lane M, Sanches M, Diaz AP, Tseng PT, Lin PY, Berk M, Clarke G, O’Neil A, Jacka F, Stubbs B, Carvalho AF, Quevedo J, Soares JC, Fernandes BS (2020). “The kynurenine pathway in major depressive disorder, bipolar disorder, and schizophrenia: a meta-analysis of 101 studies”Molecular Psychiatry26 (8): 4158–4178. doi:10.1038/s41380-020-00951-9PMID 33230205S2CID 227132820 – via doi: 10.1038/s41380-020-00951-9. PMID 33230205.
  27. Holtze M, Saetre P, Engberg G, Schwieler L, Werge T, Andreassen OA, Hall H, Terenius L, Agartz I, Jönsson EG, Schalling M, Erhardt S (2012). “Kynurenine 3-monooxygenase polymorphisms: relevance for kynurenic acid synthesis in patients with schizophrenia and healthy controls”J Psychiatry Neurosci37 (1): 53–7. doi:10.1503/jpn.100175PMC 3244499PMID 21693093.
  28. Campbell BM, Charych E, Lee AW, Möller T (2014). “Kynurenines in CNS disease: regulation by inflammatory cytokines”Front Neurosci8: 12. doi:10.3389/fnins.2014.00012PMC 3915289PMID 24567701.
  29. Buness A, Roth A, Herrmann A, Schmitz O, Kamp H, Busch K, Suter L (2014). “Identification of metabolites, clinical chemistry markers and transcripts associated with hepatotoxicity”PLOS ONE9 (5): e97249. Bibcode:2014PLoSO…997249Bdoi:10.1371/journal.pone.0097249PMC 4023975PMID 24836604.
  30. Hirata Y, Kawachi T, Sugimura T (1967). “Fatty liver induced by injection of L-tryptophan”. Biochim. Biophys. Acta144 (2): 233–41. doi:10.1016/0005-2760(67)90153-1PMID 4168935.

Categories:

Post a Comment

Your email address will not be published. Required fields are marked *