k

Tetramers and tetrameric protein

An example of a subunit, human hemoglobin. The protein’s α and β subunits are coloured red and blue.

tetramer is an oligomer formed from four monomers or subunits. The associated property is called tetramery.

An example from inorganic chemistry is titanium methoxide with the empirical formula Ti(OCH3)4, which is tetrameric in solid state and has the molecular formula Ti4(OCH3)16. An example from organic chemistry is kobophenol A, a substance that is formed by combining four molecules of resveratrol.

In biochemistry, it similarly refers to a biomolecule formed of four units, that are the same (homotetramer), i.e. as in Concanavalin A or different (heterotetramer), i.e. as in hemoglobin. Hemoglobin has 4 similar sub-units while immunoglobulins have 2 very different sub-units. The different sub-units may have each their own activity, such as binding biotin in avidin tetramers, or have a common biological property, such as the allosteric binding of oxygen in hemoglobin.

See also

  • Cluster chemistry; atomic and molecular clusters
  • Tetramerium, a genus of plants belonging to the family Acanthaceae
  • Tetramery (botany), having four parts in a distinct whorl of a plant structure
    • Merosity (from the greek “méros,” which means “having parts”) refers to the number of component parts in a distinct whorl of a plant structure.[1] The term is most commonly used in the context of a flower where it refers to the number of sepals in a whorl of the calyx, the number of petals in a whorl of the corolla, the number of stamens in a whorl of the androecium, or the number of carpels in a whorl of the gynoecium. The term may also be used to refer to the number of leaves in a leaf whorl. In nature, five or three parts per whorl have the highest frequency of occurrence, but four or two parts per whorl are not uncommon. Two consecutive whorls of dimerous petals are often mistaken for tetramerous petals. If all of the whorls in a given floral arrangement have the same merosity, the flower is said to be isomerous (equal parts), otherwise the flower is anisomerous (unequal parts). For example, Trillium is isomerous since all whorls are trimerous (one whorl of three sepals, zero or one whorl of three petals, two whorls of three stamens each, and one whorl of three carpels). Trillium also has one whorl of three leaves.
  • Tetrameric protein
two protein subunits bind to form a dimer. Two dimers then bind to form the final tetramer.
The formation of the sorbitol dehydrogenase tetramer from its monomers via dimers.

tetrameric protein is a protein with a quaternary structure of four subunits (tetrameric). Homotetramers have four identical subunits (such as glutathione S-transferase), and heterotetramers are complexes of different subunits. A tetramer can be assembled as dimer of dimers with two homodimer subunits (such as sorbitol dehydrogenase), or two heterodimer subunits (such as hemoglobin).

Subunit interactions in tetramers

The interactions between subunits forming a tetramer is primarily determined by non covalent interaction. Hydrophobic effectshydrogen bonds and electrostatic interactions are the primary sources for this binding process between subunits. For homotetrameric proteins such as sorbitol dehydrogenase (SDH), the structure is believed to have evolved going from a monomeric to a dimeric and finally a tetrameric structure in evolution. The binding process in SDH and many other tetrameric enzymes can be described by the gain in free energy which can be determined from the rate of association and dissociation. The above image shows the assembly of the four subunits (A,B,C and D) in SDH.

  • Hellgren M, Kaiser C, de Haij S, Norberg A, Höög JO (December 2007). “A hydrogen-bonding network in mammalian sorbitol dehydrogenase stabilizes the tetrameric state and is essential for the catalytic power”. Cellular and Molecular Life Sciences64 (23): 3129–3138. doi:10.1007/s00018-007-7318-1PMID 17952367S2CID 22090973.

Hydrogen bonds between subunits

Hydrogen bonding networks between subunits has been shown to be important for the stability of the tetrameric quaternary protein structure. For example, a study of SDH which used diverse methods such as protein sequence alignments, structural comparisons, energy calculations, gel filtration experiments and enzyme kinetics experiments, could reveal an important hydrogen bonding network which stabilizes the tetrameric quaternary structure in mammalian SDH.

  • Hellgren M, Kaiser C, de Haij S, Norberg A, Höög JO (December 2007). “A hydrogen-bonding network in mammalian sorbitol dehydrogenase stabilizes the tetrameric state and is essential for the catalytic power”. Cellular and Molecular Life Sciences64 (23): 3129–3138. doi:10.1007/s00018-007-7318-1PMID 17952367S2CID 22090973.

Tetramers in immunology

In immunology, MHC tetramers can be used in tetramer assays, to quantify numbers of antigen-specific T cells (especially CD8+ T cells). MHC tetramers are based on recombinant class I molecules that, through the action of bacterial BirA, have been biotinylated. These molecules are folded with the peptide of interest and β2M and tetramerized by a fluorescently labeled streptavidin. (Streptavidin binds to four biotins per molecule.) This tetramer reagent will specifically label T cells that express T cell receptors that are specific for a given peptide-MHC complex. For example, a Kb/FAPGNYPAL tetramer will specifically bind to Sendai virus specific cytotoxic T cell in a C57BL/6 mouse. Antigen specific responses can be measured as CD8+, tetramer+ T cells as a fraction of all CD8+ lymphocytes.

The reason for using a tetramer, as opposed to a single labeled MHC class I molecule is that the tetrahedral tetramers can bind to three TCRs at once, allowing specific binding in spite of the low (1 micromolar) affinity of the typical class I-peptide-TCR interaction. MHC class II tetramers can also be made, although these are more difficult to work with practically.

MHC Class II Wikipedia full page

MHC Class II molecules are a class of major histocompatibility complex (MHC) molecules normally found only on professional antigen-presenting cells such as dendritic cellsmononuclear phagocytes, some endothelial cellsthymic epithelial cells, and B cells. These cells are important in initiating immune responses. The antigens presented by class II peptides are derived from extracellular proteins (not cytosolic as in MHC class I). Loading of a MHC class II molecule occurs by phagocytosis; extracellular proteins are endocytosed, digested in lysosomes, and the resulting epitopic peptide fragments are loaded onto MHC class II molecules prior to their migration to the cell surface. In humans, the MHC class II protein complex is encoded by the human leukocyte antigen gene complex (HLA). HLAs corresponding to MHC class II are HLA-DPHLA-DMHLA-DOAHLA-DOBHLA-DQ, and HLA-DR. Mutations in the HLA gene complex can lead to bare lymphocyte syndrome (BLS), which is a type of MHC class II deficiency. Like MHC class I molecules, class II molecules are also heterodimers, but in this case consist of two homogenous peptides, an α and β chain, both of which are encoded in the MHC. The subdesignation α1, α2, etc. refers to separate domains within the HLA gene; each domain is usually encoded by a different exon within the gene, and some genes have further domains that encode leader sequences, transmembrane sequences, etc. These molecules have both extracellular regions as well as a transmembrane sequence and a cytoplasmic tail. The α1 and β1 regions of the chains come together to make a membrane-distal peptide-binding domain, while the α2 and β2 regions, the remaining extracellular parts of the chains, form a membrane-proximal immunoglobulin-like domain. The antigen binding groove, where the antigen or peptide binds, is made up of two α-helixes walls and β-sheet. Because the antigen-binding groove of MHC class II molecules is open at both ends while the corresponding groove on class I molecules is closed at each end, the antigens presented by MHC class II molecules are longer, generally between 15 and 24 amino acid residues long. These molecules are constitutively expressed in professional, immune antigen-presenting cells, but may also be induced on other cells by interferon γ. They are expressed on the epithelial cells in the thymus and on APCs in the periphery. MHC class II expression is closely regulated in APCs by CIITA, which is the MHC class II transactivator. CIITA is solely expressed on professional APCs; however, non-professional APCs can also regulate CIITA activity and MHC II expression. As mentioned interferon γ (IFN γ ) triggers the expression of CIITA and is also responsible for converting monocytes which are MHC class II negative cells into functional APCs that express MHC class II on their surfaces. MHC class II is also expressed on group 3 innate lymphoid cells.’

See also

Homotetramers and heterotetramers

A homotetrameric complex, beta-glucuronidase (a glycosidase). Each subunit has the same amino acid sequence.

homotetramer is a protein complex made up of four identical subunits which are associated but not covalently bound. Conversely, a heterotetramer is a 4-subunit complex where one or more subunits differ.

Examples of homotetramers include:

Examples of heterotetramers include haemoglobin (pictured), the NMDA receptor, some aquaporins, some AMPA receptors, as well as some enzymes.

The heterotetrameric molecule haemoglobin, made up of four subunits of two different types (coloured red and blue.)

Purification of heterotetramers

Ion-exchange chromatography is useful for isolating specific heterotetrameric protein assemblies, allowing purification of specific complexes according to both the number and the position of charged peptide tags. Nickel affinity chromatography may also be employed for heterotetramer purification.

Intragenic complementation

Multiple copies of a polypeptide encoded by a gene often can form an aggregate referred to as a multimer. When a multimer is formed from polypeptides produced by two different mutant alleles of a particular gene, the mixed multimer may exhibit greater functional activity than the unmixed multimers formed by each of the mutants alone. When a mixed multimer displays increased functionality relative to the unmixed multimers, the phenomenon is referred to as intragenic complementation. In humans, argininosuccinate lyase (ASL) is a homotetrameric enzyme that can undergo intragenic complementation. An ASL disorder in humans can arise from mutations in the ASL gene, particularly mutations that affect the active site of the tetrameric enzyme. ASL disorder is associated with considerable clinical and genetic heterogeneity which is considered to reflect the extensive intragenic complementation occurring among different individual patients.

References

  1. Hellgren M, Kaiser C, de Haij S, Norberg A, Höög JO (December 2007). “A hydrogen-bonding network in mammalian sorbitol dehydrogenase stabilizes the tetrameric state and is essential for the catalytic power”. Cellular and Molecular Life Sciences64 (23): 3129–3138. doi:10.1007/s00018-007-7318-1PMID 17952367S2CID 22090973.
  2. Dolton G, Tungatt K, Lloyd A, Bianchi V, Theaker SM, Trimby A, et al. (September 2015). “More tricks with tetramers: a practical guide to staining T cells with peptide-MHC multimers”Immunology146 (1): 11–22. doi:10.1111/imm.12499PMC 4552497PMID 26076649.
  3. “GO term: protein homotetramerization”. YeastGenome. Archived from the original on 27 September 2011. Retrieved 14 May 2011.
  4. “GO term: protein heterotetramerization”. YeastGenome. Archived from the original on 27 September 2011. Retrieved 14 May 2011.
  5. Watanabe M, Blobel G (April 1989). “Cytosolic factor purified from Escherichia coli is necessary and sufficient for the export of a preprotein and is a homotetramer of SecB”Proceedings of the National Academy of Sciences of the United States of America86 (8): 2728–2732. Bibcode:1989PNAS…86.2728Wdoi:10.1073/pnas.86.8.2728PMC 286991PMID 2649892.
  6. Warren MA, Kucharski LM, Veenstra A, Shi L, Grulich PF, Maguire ME (July 2004). “The CorA Mg2+ transporter is a homotetramer”Journal of Bacteriology186 (14): 4605–4612. doi:10.1128/JB.186.14.4605-4612.2004PMC 438605PMID 15231793.
  7. Neely JD, Christensen BM, Nielsen S, Agre P (August 1999). “Heterotetrameric composition of aquaporin-4 water channels”. Biochemistry38 (34): 11156–11163. doi:10.1021/bi990941sPMID 10460172.
  8. Chang TH, Hsieh FL, Ko TP, Teng KH, Liang PH, Wang AH (February 2010). “Structure of a heterotetrameric geranyl pyrophosphate synthase from mint (Mentha piperita) reveals intersubunit regulation”The Plant Cell22 (2): 454–467. doi:10.1105/tpc.109.071738PMC 2845413PMID 20139160.
  9. Sakash JB, Kantrowitz ER (September 2000). “The contribution of individual interchain interactions to the stabilization of the T and R states of Escherichia coli aspartate transcarbamoylase”The Journal of Biological Chemistry275 (37): 28701–28707. doi:10.1074/jbc.M005079200PMID 10875936.
  10. Fairhead M, Krndija D, Lowe ED, Howarth M (January 2014). “Plug-and-play pairing via defined divalent streptavidins”Journal of Molecular Biology426 (1): 199–214. doi:10.1016/j.jmb.2013.09.016PMC 4047826PMID 24056174.
  11. Howarth M, Chinnapen DJ, Gerrow K, Dorrestein PC, Grandy MR, Kelleher NL, et al. (April 2006). “A monovalent streptavidin with a single femtomolar biotin binding site”Nature Methods3 (4): 267–273. doi:10.1038/nmeth861PMC 2576293PMID 16554831.
  12. Turner MA, Simpson A, McInnes RR, Howell PL (August 1997). “Human argininosuccinate lyase: a structural basis for intragenic complementation”Proceedings of the National Academy of Sciences of the United States of America94 (17): 9063–9068. Bibcode:1997PNAS…94.9063Tdoi:10.1073/pnas.94.17.9063PMC 23030PMID 9256435.
  13. Yu B, Howell PL (October 2000). “Intragenic complementation and the structure and function of argininosuccinate lyase”. Cellular and Molecular Life Sciences57 (11): 1637–1651. doi:10.1007/PL00000646PMID 11092456S2CID 1254964.
  14. Yu B, Thompson GD, Yip P, Howell PL, Davidson AR (December 2001). “Mechanisms for intragenic complementation at the human argininosuccinate lyase locus”. Biochemistry40 (51): 15581–15590. doi:10.1021/bi011526ePMID 11747433.

External links

Categories

Post a Comment

Your email address will not be published. Required fields are marked *