Keratan sulfate (KS) aka keratosulfate

Not to be confused with Keratin.

Chemical structure of keratan sulfate

Keratan sulfate (KS), also called keratosulfate, is any of several sulfated glycosaminoglycans (structural carbohydrates) that have been found especially in the corneacartilage, and bone. It is also synthesized in the central nervous system where it participates both in development and in the glial scar formation following an injury. Keratan sulfates are large, highly hydrated molecules which in joints can act as a cushion to absorb mechanical shock.

Structure

Like other glycosaminoglycans keratan sulfate is a linear polymer that consists of a repeating disaccharide unit. Keratan sulfate occurs as a proteoglycan (PG) in which KS chains are attached to cell-surface or extracellular matrix proteins, termed core proteins. KS core proteins include lumicankeratocanmimecanfibromodulinPRELPosteoadherin, and aggrecan.

The basic repeating disaccharide unit within keratan sulfate is -3Galβ1-4GlcNAc6Sβ1-. This can be sulfated at carbon position 6 (C6) of either or both the Gal or GlcNAc monosaccharides. However, the detailed primary structure of specific KS types are best considered to be composed of three regions:

  • A linkage region, at one end of which the KS chain is linked to the core protein.
  • A repeat region, composed of the -3Galβ1-4GlcNAcβ1- repeating disaccharide unit and
  • A chain capping region, occurring at the opposite end of the KS chain to the protein linkage region.

The monosaccharide mannose is found within the linkage region of keratan sulfate type I (KSI). Disaccharides within the repeating region of KSII may be fucosylated and N-Acetylneuraminic acid caps the end of all keratan sulfate type II (KSII) chains and up to 70% of KSI type chains.

KS classes

The designations KSI and KSII were originally assigned on the basis of the tissue type from which the keratan sulfate was isolated. KSI was isolated from corneal tissue and KSII from skeletal tissue. Minor monosaccharide compositional differences exist between KS extracted from both sources and even KS extracted from the same source. However, major differences occur in the way each KS type is joined to its core protein. The designations KSI and KSII are now based upon these protein linkage differences. KSI is N-linked to specific asparagine amino acids via N-acetylglucosamine and KSII is O-linked to specific serine or threonine amino acids via N-acetylgalactosamine. The tissue based classification of KS no longer exists as KS types have been shown to be non tissue specific. A third type of KS (KSIII) has also been isolated from brain tissue that is O-linked to specific serine or threonine amino acids via mannose.

Corneal KSI

The amount of KS found in the cornea is 10 fold higher than it is in cartilage and 2-4 times higher than it is in other tissues. It is produced by corneal keratocytes and is thought to play a role of a dynamic buffer of corneal hydration. In a rare progressive disorder called macular corneal dystrophy (MCDC), the synthesis of keratan sulfate is either absent (MCDC type I) or abnormal (MCDC type II).

Non-corneal KSI

Osteoadherinfibromodulin, and PRELP are core proteins found in bone and cartilage, that are modified by N-linked KS chains. Osteoadherin and Fibromodulin linked KS chains are shorter than those found in the cornea, typically 8-9 disaccharide units in length. Whereas corneal KSI is composed of a number of domains showing variable degrees of sulphation the longest of which may be 8-32 disaccharide units in length. The non-reducing terminal of Fibromodulin KS is more similar in structure to the non-reducing terminal of a KSII type keratan sulphate rather than to corneal KSI. KS structure is therefore believed to be determined by the tissue specific availability of glycosyltransferases rather than linkage type to the core protein.

KSII

Cartilage KSII is almost entirely sulphated, consisting of disulphated monomers interrupted occasionally by a single monosulphated lactosamine monomer. Fucosylation is also common with alpha-linked fucose present at the carbon 3 position of sulphated GlcNAc, except in the case of tracheal KSII where this feature is absent.

See also

References

  1. Miller B, Sheppard AM, Pearlman AL (April 1997). “Developmental expression of keratan sulfate-like immunoreactivity distinguishes thalamic nuclei and cortical domains”. J. Comp. Neurol. 380 (4): 533–52. doi:10.1002/(SICI)1096-9861(19970421)380:4<533::AID-CNE9>3.0.CO;2-2PMID 9087531.
  2. Zhang H, Uchimura K, Kadomatsu K (November 2006). “Brain keratan sulfate and glial scar formation”. Ann. N. Y. Acad. Sci. 1086 (1): 81–90. Bibcode:2006NYASA1086…81Zdoi:10.1196/annals.1377.014PMID 17185507.
  3. Tai GH, Huckerby TN, Nieduszynski IA (1996). “Multiple non-reducing chain termini isolated from bovine corneal keratan sulfates”J. Biol. Chem271 (38): 23535–23546. doi:10.1074/jbc.271.38.23535PMID 8798563.
  4. Funderburgh JL. (2000). “Keratan sulfate: structure, biosynthesis, and function”Glycobiology10 (10): 951–958. doi:10.1093/glycob/10.10.951PMID 11030741.
  5. Meyer K, Linker A, et al. (1 December 1953). “The mucopolysaccharides of bovine cornea”J. Biol. Chem205 (2): 611–616. PMID 13129238. Archived from the original on 16 November 2007. Retrieved 2 November 2007.
  6. Meyer K; Hoffman P.; Linker A. (1958). “Mucopolysaccharides of Costal Cartilage”. Science128 (3329): 896. Bibcode:1958Sci…128..896Mdoi:10.1126/science.128.3329.896PMID 13592269.
  7. Seno N, Meyer K, et al. (1 March 1965). “Variations in Keratosulfates”J. Biol. Chem240 (3): 1005–1019. PMID 14284693. Archived from the original on 12 March 2008. Retrieved 1 November 2007.
  8. Nieduszynski IA, Huckerby TN, et al. (1990). “There are two major types of skeletal keratan sulphates”Biochem. J271 (1): 243–245. doi:10.1042/bj2710243PMC 1149539PMID 2222415.
  9. Krusius T, Finne J, et al. (25 June 1986). “Identification of an O-glycosidic mannose-linked sialylated tetrasaccharide and keratan sulfate oligosaccharides in the chondroitin sulfate proteoglycan of brain”J. Biol. Chem261 (18): 8237–8242. PMID 2941416. Archived from the original on 16 November 2007. Retrieved 1 November 2007.
  10. Funderburgh JL; Caterson B.; Conrad GW. (1987). “Distribution of proteoglycans antigenically related to corneal keratan sulfate proteoglycan”. J. Biol. Chem262 (24): 11634–11640. PMID 2957372.
  11. Funderburgh JL, Mann MM, Funderburgh ML (November 2003). “Keratocyte phenotype mediates proteoglycan structure: a role for fibroblasts in corneal fibrosis”J. Biol. Chem. 278 (46): 45629–37. doi:10.1074/jbc.M303292200PMC 2877919PMID 12933807.
  12. Macular dystrophy, corneal, 1 – OMIM
  13. Lauder RM, Huckerby TN, Nieduszynski IA (1997). “The structure of the keratan sulphate chains attached to fibromodulin from human articular cartilage”. Glycoconj. J14 (5): 651–660. doi:10.1023/A:1018552913584PMID 9298700.

External links

Polysaccharidesglycosaminoglycans

Categories

Leave a Reply

Your email address will not be published. Required fields are marked *

This site uses Akismet to reduce spam. Learn how your comment data is processed.