k

Microsomal prostaglandin E synthase-1 (mPGES-1)

Microsomal prostaglandin E synthase-1 (mPGES-1) or Prostaglandin E synthase is an enzyme that in humans is encoded by the PTGES gene.

The protein encoded by this gene is a glutathione-dependent prostaglandin E synthase. The expression of this gene has been shown to be induced by proinflammatory cytokine interleukin 1 beta (IL1B). Its expression can also be induced by tumor suppressor protein TP53, and may be involved in TP53-induced apoptosis.

Knockout studies in mice suggest that this gene may contribute to the pathogenesis of collagen-induced arthritis and mediate acute pain during inflammatory responses.

Gold sodium thiomalate

Sodium aurothiomalate (INN, known in the United States as gold sodium thiomalate) is a gold compound that is used for its immunosuppressive anti-rheumatic effects. Along with an orally-administered gold salt, auranofin, it is one of only two gold compounds currently employed in modern medicine. Its precise mechanism of action is unknown but is known that it inhibits the synthesis of prostaglandins. It also modulates phagocytic cells and inhibits class II major histocompatibility complex-peptide interactions. It is also known that it inhibits the following enzymes:

See also

Prostaglandin E synthase (EC 5.3.99.3, or PGE synthase) is an enzyme involved in eicosanoid and glutathione metabolism, a member of MAPEG family. It generates prostaglandin E (PGE) from prostaglandin H2.

Prostaglandin E is a family of naturally occurring prostaglandins that are used as medications.

Types include:

Both types are on the World Health Organization’s List of Essential Medicines. Prostaglandin E play an important role in thermoregulation of the human brain. Decreased formation of prostaglandin E through inhibition of cyclooxygenase is the basis for the antipyretic of nonsteroidal anti-inflammatory drugs (NSAIDs).

Prostaglandin H2 is a type of prostaglandin and a precursor for many other biologically significant molecules. It is synthesized from arachidonic acid in a reaction catalyzed by a cyclooxygenase enzyme. The conversion from Arachidonic acid to Prostaglandin H2 is a two step process. First, COX-1 catalyzes the addition of two free oxygens to form the 1,2-Dioxane bridge and a peroxide functional group to form Prostaglandin G2. Second, COX-2 reduces the peroxide functional group to a Secondary alcohol, forming Prostaglandin H2. Other peroxidases like Hydroquinone have been observed to reduce PGG2 to PGH2. PGH2 is unstable at room temperature, with a half life of 90-100 seconds, so it is often converted into a different prostaglandin.

  • Wishart, David S.; Guo, An Chi; Oler, Eponine; Wang, Fel; Anjum, Afia; Peters, Harrison; Dizon, Raynard; Sayeeda, Zinat; Tian, Siyang; Lee, Brian L.; Berjanskii, Mark; Mah, Robert; Yamamoto, Mai; Jovel Castillo, Juan; Torres Calzada, Claudia; Hiebert Giesbrecht, Mickel; Lui, Vicki W.; Varshavi, Dorna; Varshavi, Dorsa; Allen, Dana; Arndt, David; Khetarpal, Nitya; Sivakumaran, Aadhavya; Harford, Karxena; Sanford, Selena; Yee, Kristen; Cao, Xuan; Budinsky, Zachary; Liigand, Jaanus; Zhang, Lun; Zheng, Jiamin; Mandal, Rupasri; Karu, Naama; Dambrova, Maija; Schiöth, Helgi B.; Gautam, Vasuk. “Showing metabocard for Prostaglandin H2 (HMDB0001381)”Human Metabolome Database, HMDB. 5.0.
  • van der Donk WA, Tsai AL, Kulmacz RJ (December 2002). “The cyclooxygenase reaction mechanism”. Biochemistry. 41 (52): 15451–8. doi:10.1021/bi026938hPMID 12501173.
  • Salomon RG, Miller DB, Zagorski MG, Coughlin DJ (October 1984). “Prostaglandin endoperoxides. 14. Solvent-induced fragmentation of prostaglandin endoperoxides. New aldehyde products from PGH2 and a novel intramolecular 1,2-hydride shift during endoperoxide fragmentation in aqueous solution”. Journal of the American Chemical Society. 106 (20): 6049–6060. doi:10.1021/ja00332a049ISSN 0002-7863.
  • Hla T, Neilson K (August 1992). “Human cyclooxygenase-2 cDNA”. Proceedings of the National Academy of Sciences of the United States of America. 89 (16): 7384–8. Bibcode:1992PNAS…89.7384Hdoi:10.1073/pnas.89.16.7384PMC 49714PMID 1380156.

It is acted upon by:

It rearranges non-enzymatically to:

Use of prostaglandin H2:

Effects of Aspirin on prostaglandin H2:

  • Aspirin has been hypothesized to block the conversion of arachidonic acid to prostaglandin
Figure 1: Synthetic pathways from PGH2 (the parent compound) to prostaglandins, prostacyclin and thromboxanes

The synthase generating PGE2 is a membrane-associated protein.

Biosynthesis of eicosanoids.

Isozymes

Humans express three prostaglandin-E synthase isozymes, each encoded by a separate gene:

References

  1.  GRCh38: Ensembl release 89: ENSG00000148344 – Ensembl, May 2017
  2.  GRCm38: Ensembl release 89: ENSMUSG00000050737 – Ensembl, May 2017
  3. “Human PubMed Reference:”National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. “Mouse PubMed Reference:”National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. Jakobsson PJ, Thorén S, Morgenstern R, et al. (1989). “Identification of human prostaglandin E synthase: a microsomal glutathione-dependent, inducible enzyme, constituting a potential novel drug target”Proc Natl Acad Sci USA96 (13): 7220–7225. Bibcode:1999PNAS…96.7220Jdoi:10.1073/pnas.96.13.7220PMC 22058PMID 10377395.
  6. Hui-Hua Chang; Emmanuelle J Meuillet (2011). “Identification and development of mPGES-1 inhibitors: where we are at?”Future Med Chem3 (15): 1909–1934. doi:10.4155/fmc.11.136PMC 3232027PMID 22023034.
  7. Polyak K, Xia Y, Zweier JL, Kinzler KW, Vogelstein B (Sep 1997). “A model for p53-induced apoptosis”. Nature389 (6648): 300–5. Bibcode:1997Natur.389..300Pdoi:10.1038/38525PMID 9305847S2CID 4429638.
  8. Jakobsson PJ, Morgenstern R, Mancini J, Ford-Hutchinson A, Persson B (May 1999). “Common structural features of MAPEG — a widespread superfamily of membrane-associated proteins with highly divergent functions in eicosanoid and glutathione metabolism”Protein Sci8 (3): 689–92. doi:10.1110/ps.8.3.689PMC 2144274PMID 10091672.
  9. “Entrez Gene: PTGES prostaglandin E synthase”.
  10. Jegerschold, C.; Pawelzik, S. -C.; Purhonen, P.; Bhakat, P.; Gheorghe, K. R.; Gyobu, N.; Mitsuoka, K.; Morgenstern, R.; Jakobsson, P. -J.; Hebert, H. (2008). “Structural basis for induced formation of the inflammatory mediator prostaglandin E2”Proceedings of the National Academy of Sciences105 (32): 11110–11115. Bibcode:2008PNAS..10511110Jdoi:10.1073/pnas.0802894105PMC 2516235PMID 18682561.
  11. Murakami M, Nakatani Y, Tanioka T, Kudo I (August 2002). “Prostaglandin E synthase”. Prostaglandins Other Lipid Mediat. 68–69: 383–99. doi:10.1016/S0090-6980(02)00043-6PMID 12432931S2CID 22246484.
  12. Park JY, Pillinger MH, Abramson SB (June 2006). “Prostaglandin E2 synthesis and secretion: the role of PGE2 synthases”. Clin. Immunol119 (3): 229–40. doi:10.1016/j.clim.2006.01.016PMID 16540375.

External links

Metabolismlipid metabolism – eicosanoid metabolism enzymes
Prostanoid signaling modulators
Isomerases: intramolecular oxidoreductases (EC 5.3)
Enzymes
Drugs for erectile dysfunction (G04BE) and premature ejaculation
Eicosanoids
Prostanoid signaling modulators

Portal:

Categories

Further reading

Post a Comment

Your email address will not be published. Required fields are marked *