k

Cathepsin G

Cathepsin G is a protein that in humans is encoded by the CTSG gene. It is one of the three serine proteases of the chymotrypsin family that are stored in the azurophil granules, and also a member of the peptidase S1 protein family. Cathepsin G plays an important role in eliminating intracellular pathogens and breaking down tissues at inflammatory sites, as well as in anti-inflammatory response.

An azurophilic granule is a cellular object readily stainable with a Romanowsky stain. In white blood cells and hyperchromatin, staining imparts a burgundy or merlot coloration. Neutrophils in particular are known for containing azurophils loaded with a wide variety of anti-microbial defensins that fuse with phagocytic vacuoles. Azurophils may contain myeloperoxidasephospholipase A2acid hydrolaseselastase, defensins, neutral serine proteasesbactericidal permeability-increasing proteinlysozymecathepsin Gproteinase 3, and proteoglycans.[citation needed] Azurophil granules are also known as “primary granules”. Furthermore, the term “azurophils” may refer to a unique type of cells, identified only in reptiles. These cells are similar in size to so-called heterophils with abundant cytoplasm that is finely to coarsely granular and may sometimes contain vacuoles. Granules may impart a purplish hue to the cytoplasm, particularly to the outer region. Occasionally, azurophils are observed with vacuolated cytoplasm.

See also

Structure

Gene

The CTSG gene is located at chromosome 14q11.2, consisting of 5 exons. Each residue of the catalytic triad is located on a separate exon. Five polymorphisms have been identified by scanning the entire coding region. Cathepsin G is one of those homologous protease that evolved from a common ancestor by gene duplication.

Protein

Cathepsin G is a 255-amino-acid-residue protein including an 18-residue signal peptide, a two-residue activation peptide at the N-terminus and a carboxy terminal extension. The activity of cathepsin G depends on a catalytic triad composed of aspartatehistidine and serine residues which are widely separated in the primary sequence but close to each other at the active site of the enzyme in the tertiary structure.

  • Salvesen G, Farley D, Shuman J, Przybyla A, Reilly C, Travis J (April 1987). “Molecular cloning of human cathepsin G: structural similarity to mast cell and cytotoxic T lymphocyte proteinases”. Biochemistry26 (8): 2289–93. doi:10.1021/bi00382a032PMID 3304423.
  • Korkmaz B, Moreau T, Gauthier F (February 2008). “Neutrophil elastase, proteinase 3 and cathepsin G: physicochemical properties, activity and physiopathological functions”. Biochimie90 (2): 227–42. doi:10.1016/j.biochi.2007.10.009PMID 18021746.

Function

Cathepsin G has a specificity similar to that of chymotrypsin C, but it is most closely related to other immune serine proteases, such as neutrophil elastase and the granzymes. As a neutrophil serine protease, was first identified as degradative enzyme that acts intracellularly to degrade ingested host pathogens and extracellularly in the breakdown of ECM components at inflammatory sites. It localizes to Neutrophil extracellular traps (NETs), via its high affinity for DNA, an unusual property for serine proteases. Transcript variants utilizing alternative polyadenylation signals exist for this gene. Cathepsin G was also found to exert broad-spectrum antibacterial action against Gram-negative and –positive bacteria independent of the function mentioned above. Other functions of cathepsin G have been reported, including cleavage of receptors, conversion of angiotensin I to angiotensin II, platelet activation, and induction of airway submucosal gland secretion. Potential implications of the enzyme in blood-brain barrier breakdown was also found.

Clinical significance

Cathepsin G has been reported to play an important role in a variety of diseases, including rheumatoid arthritiscoronary artery diseaseperiodontitisischemic reperfusion injury, and bone metastasis. It is also implicated in a variety of infectious inflammatory diseases, including chronic obstructive pulmonary disease, acute respiratory distress syndrome, and cystic fibrosis. A recent study shows that patients with CTSG gene polymorphisms have higher risk of chronic postsurgical pain, suggesting cathepsin G may serve as a novel target for pain control and a potential marker to predict chronic postsurgical pain. An upregulation of cathepsin G was reported in studies of keratoconus.

Interactions

Cathepsin G has been found to interact with:

Cathepsin G is inhibited by:

Cathepsin G lowers levels of:

Gold sodium thiomalate

Sodium aurothiomalate (gold sodium thiomalate) is a gold compound that is used for its immunosuppressive anti-rheumatic effects. Along with an orally-administered gold salt, auranofin, it is one of only two gold compounds currently employed in modern medicine. Its precise mechanism of action is unknown but is known that it inhibits the synthesis of prostaglandins. It also modulates phagocytic cells and inhibits class II major histocompatibility complex-peptide interactions. It is also known that it inhibits the following enzymes:

See also

References

  1. GRCh38: Ensembl release 89: ENSG00000100448 – Ensembl, May 2017
  2. GRCm38: Ensembl release 89: ENSMUSG00000040314 – Ensembl, May 2017
  3. “Human PubMed Reference:”National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. “Mouse PubMed Reference:”National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. Janoff A, Scherer J (November 1968). “Mediators of inflammation in leukocyte lysosomes. IX. Elastinolytic activity in granules of human polymorphonuclear leukocytes”The Journal of Experimental Medicine128 (5): 1137–55. doi:10.1084/jem.128.5.1137PMC 2138566PMID 5303065.
  6. Kao RC, Wehner NG, Skubitz KM, Gray BH, Hoidal JR (December 1988). “Proteinase 3. A distinct human polymorphonuclear leukocyte proteinase that produces emphysema in hamsters”The Journal of Clinical Investigation82 (6): 1963–73. doi:10.1172/JCI113816PMC 442778PMID 3198760.
  7. Baggiolini M, Schnyder J, Bretz U, Dewald B, Ruch W (1979). “Cellular Mechanisms of Proteinase Release from Inflammatory Cells and the Degradation of Extracellular Proteins”. In Evered D, Whelan J (eds.). Ciba Foundation Symposium 75 – Protein Degradation in Health and Disease. Novartis Foundation Symposia. Vol. 75. pp. 105–21. doi:10.1002/9780470720585.ch7ISBN 9780470720585PMID 399884.
  8. Virca GD, Metz G, Schnebli HP (October 1984). “Similarities between human and rat leukocyte elastase and cathepsin G”European Journal of Biochemistry144 (1): 1–9. doi:10.1111/j.1432-1033.1984.tb08423.xPMID 6566611.
  9. Herrmann SM, Funke-Kaiser H, Schmidt-Petersen K, Nicaud V, Gautier-Bertrand M, Evans A, Kee F, Arveiler D, Morrison C, Orzechowski HD, Elbaz A, Amarenco P, Cambien F, Paul M (September 2001). “Characterization of polymorphic structure of cathepsin G gene: role in cardiovascular and cerebrovascular diseases”Arteriosclerosis, Thrombosis, and Vascular Biology21 (9): 1538–43. doi:10.1161/hq0901.095555PMID 11557685.
  10. Salvesen G, Enghild JJ (1991). “Zymogen activation specificity and genomic structures of human neutrophil elastase and cathepsin G reveal a new branch of the chymotrypsinogen superfamily of serine proteinases”. Biomedica Biochimica Acta50 (4–6): 665–71. PMID 1801740.
  11. Salvesen G, Farley D, Shuman J, Przybyla A, Reilly C, Travis J (April 1987). “Molecular cloning of human cathepsin G: structural similarity to mast cell and cytotoxic T lymphocyte proteinases”. Biochemistry26 (8): 2289–93. doi:10.1021/bi00382a032PMID 3304423.
  12. Korkmaz B, Moreau T, Gauthier F (February 2008). “Neutrophil elastase, proteinase 3 and cathepsin G: physicochemical properties, activity and physiopathological functions”. Biochimie90 (2): 227–42. doi:10.1016/j.biochi.2007.10.009PMID 18021746.
  13. Thomas MP, Whangbo J, McCrossan G, Deutsch AJ, Martinod K, Walch M, Lieberman J (June 2014). “Leukocyte protease binding to nucleic acids promotes nuclear localization and cleavage of nucleic acid binding proteins”Journal of Immunology192 (11): 5390–7. doi:10.4049/jimmunol.1303296PMC 4041364PMID 24771851.
  14. Pham CT (July 2006). “Neutrophil serine proteases: specific regulators of inflammation”. Nature Reviews. Immunology6 (7): 541–50. doi:10.1038/nri1841PMID 16799473S2CID 111538.
  15. “Entrez Gene: CTSG cathepsin G”.
  16. Shafer WM, Pohl J, Onunka VC, Bangalore N, Travis J (January 1991). “Human lysosomal cathepsin G and granzyme B share a functionally conserved broad spectrum antibacterial peptide”The Journal of Biological Chemistry266 (1): 112–6. doi:10.1016/S0021-9258(18)52409-1PMID 1985886.
  17. Beaufort N, Leduc D, Rousselle JC, Magdolen V, Luther T, Namane A, Chignard M, Pidard D (January 2004). “Proteolytic regulation of the urokinase receptor/CD87 on monocytic cells by neutrophil elastase and cathepsin G”Journal of Immunology172 (1): 540–9. doi:10.4049/jimmunol.172.1.540PMID 14688365.
  18. Bank U, Ansorge S (February 2001). “More than destructive: neutrophil-derived serine proteases in cytokine bioactivity control”. Journal of Leukocyte Biology69 (2): 197–206. doi:10.1189/jlb.69.2.197PMID 11272269S2CID 30791872.
  19. Reilly CF, Tewksbury DA, Schechter NM, Travis J (August 1982). “Rapid conversion of angiotensin I to angiotensin II by neutrophil and mast cell proteinases”The Journal of Biological Chemistry257 (15): 8619–22. doi:10.1016/S0021-9258(18)34171-1PMID 6807977.
  20. Sambrano GR, Huang W, Faruqi T, Mahrus S, Craik C, Coughlin SR (March 2000). “Cathepsin G activates protease-activated receptor-4 in human platelets”The Journal of Biological Chemistry275 (10): 6819–23. doi:10.1074/jbc.275.10.6819PMID 10702240.
  21. Nadel JA (September 1991). “Role of mast cell and neutrophil proteases in airway secretion”. The American Review of Respiratory Disease144 (3 Pt 2): S48–51. doi:10.1164/ajrccm/144.3_pt_2.S48PMID 1892327.
  22. Armao D, Kornfeld M, Estrada EY, Grossetete M, Rosenberg GA (September 1997). “Neutral proteases and disruption of the blood-brain barrier in rat”. Brain Research767 (2): 259–64. doi:10.1016/S0006-8993(97)00567-2PMID 9367256S2CID 40103486.
  23. Szekanecz Z, Koch AE (May 2007). “Macrophages and their products in rheumatoid arthritis”. Current Opinion in Rheumatology19 (3): 289–95. doi:10.1097/BOR.0b013e32805e87aePMID 17414958S2CID 8096646.
  24. Takei T, Sakai S, Yokonuma T, Ijima H, Kawakami K (Jan–Feb 2007). “Fabrication of artificial endothelialized tubes with predetermined three-dimensional configuration from flexible cell-enclosing alginate fibers”. Biotechnology Progress23 (1): 182–6. doi:10.1021/bp060152jPMID 17269686S2CID 40332839.
  25. Liu R, Chen L, Wu W, Chen H, Zhang S (January 2016). “Neutrophil serine proteases and their endogenous inhibitors in coronary artery ectasia patients”Anatolian Journal of Cardiology16 (1): 23–8. doi:10.5152/akd.2015.6072PMC 5336701PMID 26467359.
  26. Komine K, Kuroishi T, Ozawa A, Komine Y, Minami T, Shimauchi H, Sugawara S (March 2007). “Cleaved inflammatory lactoferrin peptides in parotid saliva of periodontitis patients”. Molecular Immunology44 (7): 1498–508. doi:10.1016/j.molimm.2006.09.003PMID 17030385.
  27. Shimoda N, Fukazawa N, Nonomura K, Fairchild RL (March 2007). “Cathepsin g is required for sustained inflammation and tissue injury after reperfusion of ischemic kidneys”The American Journal of Pathology170 (3): 930–40. doi:10.2353/ajpath.2007.060486PMC 1864870PMID 17322378.
  28. Kawabata K, Hagio T, Matsuoka S (September 2002). “The role of neutrophil elastase in acute lung injury”. European Journal of Pharmacology451 (1): 1–10. doi:10.1016/s0014-2999(02)02182-9PMID 12223222.
  29. Moraes TJ, Chow CW, Downey GP (April 2003). “Proteases and lung injury”. Critical Care Medicine31 (4 Suppl): S189–94. doi:10.1097/01.CCM.0000057842.90746.1EPMID 12682439S2CID 45296600.
  30. Twigg MS, Brockbank S, Lowry P, FitzGerald SP, Taggart C, Weldon S (2015). “The Role of Serine Proteases and Antiproteases in the Cystic Fibrosis Lung”Mediators of Inflammation2015: 293053. doi:10.1155/2015/293053PMC 4491392PMID 26185359.
  31. Liu X, Tian Y, Meng Z, Chen Y, Ho IH, Choy KW, Lichtner P, Wong SH, Yu J, Gin T, Wu WK, Cheng CH, Chan MT (October 2015). “Up-regulation of Cathepsin G in the Development of Chronic Postsurgical Pain: An Experimental and Clinical Genetic Study”. Anesthesiology123 (4): 838–50. doi:10.1097/ALN.0000000000000828PMID 26270939S2CID 43571196.
  32. Whitelock RB, Fukuchi T, Zhou L, Twining SS, Sugar J, Feder RS, Yue BY (February 1997). “Cathepsin G, acid phosphatase, and alpha 1-proteinase inhibitor messenger RNA levels in keratoconus corneas”. Investigative Ophthalmology & Visual Science38 (2): 529–34. PMID 9040486.
  33. Baumann M, Pham CT, Benarafa C (May 2013). “SerpinB1 is critical for neutrophil survival through cell-autonomous inhibition of cathepsin G”Blood121 (19): 3900–7, S1–6. doi:10.1182/blood-2012-09-455022PMC 3650706PMID 23532733.
  34. Son ED, Shim JH, Choi H, Kim H, Lim KM, Chung JH, Byun SY, Lee TR (2012). “Cathepsin G inhibitor prevents ultraviolet B-induced photoaging in hairless mice via inhibition of fibronectin fragmentation”. Dermatology224 (4): 352–60. doi:10.1159/000339337PMID 22759782S2CID 29489606.
  35. Cruz-Silva I, Neuhof C, Gozzo AJ, Nunes VA, Hirata IY, Sampaio MU, Figueiredo-Ribeiro Rde C, Neuhof H, Araújo Mda S (December 2013). “Using a Caesalpinia echinata Lam. protease inhibitor as a tool for studying the roles of neutrophil elastase, cathepsin G and proteinase 3 in pulmonary edema”. Phytochemistry96: 235–43. Bibcode:2013PChem..96..235Cdoi:10.1016/j.phytochem.2013.09.025PMID 24140156.
  36. Craciun I, Fenner AM, Kerns RJ (February 2016). “N-Arylacyl O-sulfonated aminoglycosides as novel inhibitors of human neutrophil elastase, cathepsin G and proteinase 3”Glycobiology26 (7): 701–9. doi:10.1093/glycob/cww011PMC 4976519PMID 26850997.
  37. Wang J, Sjöberg S, Tang TT, Oörni K, Wu W, Liu C, Secco B, Tia V, Sukhova GK, Fernandes C, Lesner A, Kovanen PT, Libby P, Cheng X, Shi GP (November 2014). “Cathepsin G activity lowers plasma LDL and reduces atherosclerosis”Biochimica et Biophysica Acta (BBA) – Molecular Basis of Disease1842 (11): 2174–83. doi:10.1016/j.bbadis.2014.07.026PMC 4188792PMID 25092171.

Further reading

External links

  • The MEROPS online database for peptidases and their inhibitors: S01.133

This article incorporates text from the United States National Library of Medicine, which is in the public domain.

Hydrolaseproteases (EC 3.4)
Endopeptidasesserine proteases/serine endopeptidases (EC 3.4.21)
Enzymes

Portal:

Categories

Post a Comment

Your email address will not be published. Required fields are marked *